@article{SchultheisLiewaldBambergetal.2011, author = {Schultheis, Christian and Liewald, Jana Fiona and Bamberg, Ernst and Nagel, Georg and Gottschalk, Alexander}, title = {Optogenetic Long-Term Manipulation of Behavior and Animal Development}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0018766}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141250}, pages = {e18766}, year = {2011}, abstract = {Channelrhodopsin-2 (ChR2) is widely used for rapid photodepolarization of neurons, yet, as it requires high-intensity blue light for activation, it is not suited for long-term in vivo applications, e. g. for manipulations of behavior, or photoactivation of neurons during development. We used "slow" ChR2 variants with mutations in the C128 residue, that exhibit delayed off-kinetics and increased light sensitivity in Caenorhabditis elegans. Following a 1 s light pulse, we could photodepolarize neurons and muscles for minutes (and with repeated brief stimulation, up to days) with low-intensity light. Photoactivation of ChR2(C128S) in command interneurons elicited long-lasting alterations in locomotion. Finally, we could optically induce profound changes in animal development: Long-term photoactivation of ASJ neurons, which regulate larval growth, bypassed the constitutive entry into the "dauer" larval state in daf-11 mutants. These lack a guanylyl cyclase, which possibly renders ASJ neurons hyperpolarized. Furthermore, photostimulated ASJ neurons could acutely trigger dauer-exit. Thus, slow ChR2s can be employed to long-term photoactivate behavior and to trigger alternative animal development.}, language = {en} }