@article{WernerMarcusSheikhbahaeietal.2018, author = {Werner, Rudolf A. and Marcus, Charles and Sheikhbahaei, Sara and Solnes, Lilja B. and Leal, Jeffrey P. and Du, Yong and Rowe, Steven P. and Higuchi, Takahiro and Buck, Andreas K. and Lapa, Constantin and Javadi, Mehrbod S.}, title = {Visual and Semiquantitative Accuracy in Clinical Baseline 123I-Ioflupane SPECT/CT Imaging}, series = {Clinical Nuclear Medicine}, volume = {44}, journal = {Clinical Nuclear Medicine}, number = {1}, issn = {1536-0229}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168181}, year = {2018}, abstract = {PURPOSE: We aimed to (a) elucidate the concordance of visual assessment of an initial I-ioflupane scan by a human interpreter with comparison to results using a fully automatic semiquantitative method and (b) to assess the accuracy compared to follow-up (f/u) diagnosis established by movement disorder specialists. METHODS: An initial I-ioflupane scan was performed in 382 patients with clinically uncertain Parkinsonian syndrome. An experienced reader performed a visual evaluation of all scans independently. The findings of the visual read were compared with semiquantitative evaluation. In addition, available f/u clinical diagnosis (serving as a reference standard) was compared with results of the human read and the software. RESULTS: When comparing the semiquantitative method with the visual assessment, discordance could be found in 25 (6.5\%) of 382 of the cases for the experienced reader (ĸ = 0.868). The human observer indicated region of interest misalignment as the main reason for discordance. With neurology f/u serving as reference, the results of the reader revealed a slightly higher accuracy rate (87.7\%, ĸ = 0.75) compared to semiquantification (86.2\%, ĸ = 0.719, P < 0.001, respectively). No significant difference in the diagnostic performance of the visual read versus software-based assessment was found. CONCLUSIONS: In comparison with a fully automatic semiquantitative method in I-ioflupane interpretation, human assessment obtained an almost perfect agreement rate. However, compared to clinical established diagnosis serving as a reference, visual read seemed to be slightly more accurate as a solely software-based quantitative assessment.}, subject = {SPECT}, language = {en} } @article{WernerOrdonezSanchezBautistaetal.2019, author = {Werner, Rudolf A. and Ordonez, Alvaro A. and Sanchez-Bautista, Julian and Marcus, Charles and Lapa, Constantin and Rowe, Steven P. and Pomper, Martin G. and Leal, Jeffrey P. and Lodge, Martin A. and Javadi, Mehrbod S. and Jain, Sanjay K. and Higuchi, Takahiro}, title = {Novel functional renal PET imaging with 18F-FDS in human subjects}, series = {Clinical Nuclear Medicine}, volume = {44}, journal = {Clinical Nuclear Medicine}, number = {5}, issn = {0363-9762}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174634}, pages = {410-411}, year = {2019}, abstract = {The novel PET probe 2-deoxy-2-18F-fluoro-D-sorbitol (18F-FDS) has demonstrated favorable renal kinetics in animals. We aimed to elucidate its imaging properties in two human volunteers. 18F-FDS was produced by a simple one-step reduction from 18F-FDG. On dynamic renal PET, the cortex was delineated and activity gradually transited in the parenchyma, followed by radiotracer excretion. No adverse effects were reported. Given the higher spatiotemporal resolution of PET relative to conventional scintigraphy, 18F-FDS PET offers a more thorough evaluation of human renal kinetics. Due to its simple production from 18F-FDG, 18F-FDS is virtually available at any PET facility with radiochemistry infrastructure.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @unpublished{WernerBundschuhBundschuhetal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Javadi, Mehrbod S. and Leal, Jeffrey P. and Higuchi, Takahiro and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Lapa, Constantin and Rowe, Steven P.}, title = {Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on \(^{18}\)F-DCFPyL PET/CT Imaging}, series = {Journal of Nuclear Medicine}, journal = {Journal of Nuclear Medicine}, issn = {0161-5505}, doi = {10.2967/jnumed.118.217588}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167788}, year = {2018}, abstract = {Objectives: Recently, the standardized reporting and data system for prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging studies, termed PSMA-RADS version 1.0, was introduced. We aimed to determine the interobserver agreement for applying PSMA-RADS to imaging interpretation of 18F-DCFPyL PET examinations in a prospective setting mimicking the typical clinical work-flow at a prostate cancer referral center. Methods: Four readers (two experienced readers (ER, > 3 years of PSMA-targeted PET interpretation experience) and two inexperienced readers (IR, < 1 year of experience)), who had all read the initial publication on PSMA-RADS 1.0, assessed 50 18F-DCFPyL PET/computed tomography (CT) studies independently. Per scan, a maximum of 5 target lesions were selected by the observers and a PSMA-RADS score for every target lesion was recorded. No specific pre-existing conditions were placed on the selection of the target lesions, although PSMA-RADS 1.0 suggests that readers focus on the most highly avid or largest lesions. An overall scan impression based on PSMA-RADS was indicated and interobserver agreement rates on a target lesion-based, on an organ-based, and on an overall PSMA-RADS score-based level were computed. Results: The number of target lesions identified by each observer were as follows: ER 1, 123; ER 2, 134; IR 1, 123; and IR 2, 120. Among those selected target lesions, 125 were chosen by at least two individual observers (all four readers selected the same target lesion in 58/125 (46.4\%) instances, three readers in 40/125 (32\%) and two observers in 27/125 (21.6\%) instances). The interobserver agreement for PSMA-RADS scoring among identical target lesions was good (intraclass correlation coefficient (ICC) for four, three and two identical target lesions, ≥0.60, respectively). For lymph nodes, an excellent interobserver agreement was derived (ICC=0.79). The interobserver agreement for an overall scan impression based on PSMA-RADS was also excellent (ICC=0.84), with a significant difference for ER (ICC=0.97) vs. IR (ICC=0.74, P=0.005). Conclusions: PSMA-RADS demonstrates a high concordance rate in this study, even among readers with different levels of experience. This suggests that PSMA-RADS can be effectively used for communication with clinicians and can be implemented in the collection of data for large prospective trials.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerHaenscheidLealetal.2018, author = {Werner, Rudolf and H{\"a}nscheid, Heribert and Leal, Jeffrey P. and Javadi, Mehrbod S. and Higuchi, Takahiro and Lodge, Martin A. and Buck, Andreas K. and Pomper, Martin G. and Lapa, Constantin and Rowe, Steven P.}, title = {Impact of Tumor Burden on Quantitative [\(^{68}\)Ga]DOTATOC Biodistribution}, series = {Molecular Imaging and Biology}, journal = {Molecular Imaging and Biology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170280}, pages = {1-9}, year = {2018}, abstract = {Purpose: As has been previously reported, the somatostatin receptor (SSTR) imaging agent [\(^{68}\)Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotate ([\(^{68}\)Ga]DOTATATE) demonstrates lower uptake in normal organs in patients with a high neuroendocrine tumor (NET) burden. Given the higher SSTR affinity of [\(^{68}\)Ga]DOTATATE, we aimed to quantitatively investigate the biodistribution of [\(^{68}\)Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotide ([68Ga]DOTATOC) to determine a potential correlation between uptake in normal organs and NET burden. Procedures: Of the 44 included patients, 36/44 (82\%) patients demonstrated suspicious radiotracer uptake on [\(^{68}\)Ga]DOTATOC positron emission tomography (PET)/x-ray computed tomography (CT). Volumes of Interest (VOIs) were defined for tumor lesions and normal organs (spleen, liver, kidneys, adrenals). Mean body weight corrected standardized uptake value (SUV\(_{mean}\)) for normal organs was assessed and was used to calculate the corresponding mean specific activity uptake (Upt: fraction of injected activity per kg of tissue). For the entire tumor burden, SUV\(_{mean}\), maximum standardized uptake value (SUV\(_{max}\)), and the total mass (TBM) was calculated and the decay corrected tumor fractional uptake (TBU) was assessed. A Spearman's rank correlation coefficient was used to determine the correlations between normal organ uptake and tumor burden. Results: The median SUV\(_{mean}\) was 18.7 for the spleen (kidneys, 9.2; adrenals, 6.8; liver, 5.6). For tumor burden, the median values were SUV\(_{mean}\) 6.9, SUV\(_{max}\) 35.5, TBM 42.6g, and TBU 1.2\%. With increasing volume of distribution, represented by lean body mass and body surface area (BSA), Upt decreased in kidneys, liver, and adrenal glands and SUV\(_{mean}\) increased in the spleen. Correlation improved only for both kidneys and adrenals when the influence of the tumor uptake on the activity available for organ uptake was taken into account by the factor 1/(1-TBU). TBU was neither predictive for SUV\(_{mean}\) nor for Upt in any of the organs. The distribution of organ Upt vs. BSA/(1-TBU) were not different for patients with minor TBU (<3\%) vs. higher TBU (>7\%), indicating that the correlations observed in the present study are explainable by the body size effect. High tumor mass and uptake mitigated against G1 NET. Conclusions: There is no significant impact on normal organ biodistribution with increasing tumor burden on [\(^{68}\)Ga]DOTATOC PET/CT. Potential implications include increased normal organ dose with [\(^{177}\)Lu-DOTA]\(^0\)-D-Phe\(^1\)-Tyr\(^3\)-Octreotide and decreased absolute lesion detection with [\(^{68}\)Ga]DOTATOC in high NET burden.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{KhatriChungWerneretal.2021, author = {Khatri, Wajahat and Chung, Hyun Woo and Werner, Rudolf A. and Leal, Jeffrey P. and Pienta, Kenneth J. and Lodge, Martin A. and Gorin, Michael A. and Pomper, Martin G. and Rowe, Steven P.}, title = {Effect of point-spread function reconstruction for indeterminate PSMA-RADS-3A lesions on PSMA-targeted PET imaging of men with prostate cancer}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {4}, issn = {2075-4418}, doi = {10.3390/diagnostics11040665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236528}, year = {2021}, abstract = {Purpose: Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is emerging as an important modality for imaging patients with prostate cancer (PCa). As with any imaging modality, indeterminate findings will arise. The PSMA reporting and data system (PSMA-RADS) version 1.0 codifies indeterminate soft tissue findings with the PSMA-RADS-3A moniker. We investigated the role of point-spread function (PSF) reconstructions on categorization of PSMA-RADS-3A lesions. Methods: This was a post hoc analysis of an institutional review board approved prospective trial. Around 60 min after the administration of 333 MBq (9 mCi) of PSMA-targeted \(^{18}\)F-DCFPyL, patients underwent PET/computed tomography (CT) acquisitions from the mid-thighs to the skull vertex. The PET data were reconstructed with and without PSF. Scans were categorized according to PSMA-RADS version 1.0, and all PSMA-RADS-3A lesions on non-PSF images were re-evaluated to determine if any could be re-categorized as PSMA-RADS-4. The maximum standardized uptake values (SUVs) of the lesions, mean SUVs of blood pool, and the ratios of those values were determined. Results: A total of 171 PSMA-RADS-3A lesions were identified in 30 patients for whom both PSF reconstructions and cross-sectional imaging follow-up were available. A total of 13/171 (7.6\%) were re-categorized as PSMA-RADS-4 lesions with PSF reconstructions. A total of 112/171 (65.5\%) were found on follow-up to be true positive for PCa, with all 13 of the re-categorized lesions being true positive on follow-up. The lesions that were re-categorized trended towards having higher SUV\(_{max}\)-lesion and SUV\(_{max}\)-lesion/SUV\(_{mean}\)-blood-pool metrics, although these relationships were not statistically significant. Conclusions: The use of PSF reconstructions for \(^{18}\)F-DCFPyL PET can allow the appropriate re-categorization of a small number of indeterminate PSMA-RADS-3A soft tissue lesions as more definitive PSMA-RADS-4 lesions. The routine use of PSF reconstructions for PSMA-targeted PET may be of value at those sites that utilize this technology.}, language = {en} }