@article{SeherNickelMuelleretal.2011, author = {Seher, Axel and Nickel, Joachim and Mueller, Thomas D. and Kneitz, Susanne and Gebhardt, Susanne and Meyer ter Vehn, Tobias and Schlunck, Guenther and Sebald, Walter}, title = {Gene expression profiling of connective tissue growth factor (CTGF) stimulated primary human tenon fibroblasts reveals an inflammatory and wound healing response in vitro}, series = {Molecular Vision}, volume = {17}, journal = {Molecular Vision}, number = {08. Okt}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140189}, pages = {53-62}, year = {2011}, abstract = {Purpose: The biologic relevance of human connective tissue growth factor (hCTGF) for primary human tenon fibroblasts (HTFs) was investigated by RNA expression profiling using affymetrix (TM) oligonucleotide array technology to identify genes that are regulated by hCTGF. Methods: Recombinant hCTGF was expressed in HEK293T cells and purified by affinity and gel chromatography. Specificity and biologic activity of hCTGF was confirmed by biosensor interaction analysis and proliferation assays. For RNA expression profiling HTFs were stimulated with hCTGF for 48h and analyzed using affymetrix (TM) oligonucleotide array technology. Results were validated by real time RT-PCR. Results: hCTGF induces various groups of genes responsible for a wound healing and inflammatory response in HTFs. A new subset of CTGF inducible inflammatory genes was discovered (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-X-C motif] ligand 6 [CXCL6], interleukin 6 [IL6], and interleukin 8 [IL8]). We also identified genes that can transmit the known biologic functions initiated by CTGF such as proliferation and extracellular matrix remodelling. Of special interest is a group of genes, e.g., osteoglycin (OGN) and osteomodulin (OMD), which are known to play a key role in osteoblast biology. Conclusions: This study specifies the important role of hCTGF for primary tenon fibroblast function. The RNA expression profile yields new insights into the relevance of hCTGF in influencing biologic processes like wound healing, inflammation, proliferation, and extracellular matrix remodelling in vitro via transcriptional regulation of specific genes. The results suggest that CTGF potentially acts as a modulating factor in inflammatory and wound healing response in fibroblasts of the human eye.}, language = {en} } @article{LaglerElMeseryKuebleretal.2017, author = {Lagler, Charlotte and El-Mesery, Mohamed and K{\"u}bler, Alexander Christian and M{\"u}ller-Richter, Urs Dietmar Achim and St{\"u}hmer, Thorsten and Nickel, Joachim and M{\"u}ller, Thomas Dieter and Wajant, Harald and Seher, Axel}, title = {The anti-myeloma activity of bone morphogenetic protein 2 predominantly relies on the induction of growth arrest and is apoptosis-independent}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158993}, pages = {e0185720}, year = {2017}, abstract = {Multiple myeloma (MM), a malignancy of the bone marrow, is characterized by a pathological increase in antibody-producing plasma cells and an increase in immunoglobulins (plasmacytosis). In recent years, bone morphogenetic proteins (BMPs) have been reported to be activators of apoptotic cell death in neoplastic B cells in MM. Here, we use bone morphogenetic protein 2 (BMP2) to show that the "apoptotic" effect of BMPs on human neoplastic B cells is dominated by anti-proliferative activities and cell cycle arrest and is apoptosis-independent. The anti-proliferative effect of BMP2 was analysed in the human cell lines KMS12-BM and L363 using WST-1 and a Coulter counter and was confirmed using CytoTox assays with established inhibitors of programmed cell death (zVAD-fmk and necrostatin-1). Furthermore, apoptotic activity was compared in both cell lines employing western blot analysis for caspase 3 and 8 in cells treated with BMP2 and FasL. Additionally, expression profiles of marker genes of different cell death pathways were analysed in both cell lines after stimulation with BMP2 for 48h using an RT-PCR-based array. In our experiments we observed that there was rather no reduction in absolute cell number, but cells stopped proliferating following treatment with BMP2 instead. The time frame (48-72 h) after BMP2 treatment at which a reduction in cell number is detectable is too long to indicate a directly BMP2-triggered apoptosis. Moreover, in comparison to robust apoptosis induced by the approved apoptotic factor FasL, BMP2 only marginally induced cell death. Consistently, neither the known inhibitor of apoptotic cell death zVAD-fmk nor the necroptosis inhibitor necrostatin-1 was able to rescue myeloma cell growth in the presence of BMP2.}, language = {en} }