@article{XuFahmyGarciaWesdorpetal.2023, author = {Xu, Jietao and Fahmy-Garcia, Shorouk and Wesdorp, Marinus A. and Kops, Nicole and Forte, Lucia and De Luca, Claudio and Misciagna, Massimiliano Maraglino and Dolcini, Laura and Filardo, Giuseppe and Labbert{\´e}, Margot and Vanc{\´i}kov{\´a}, Karin and Kok, Joeri and van Rietbergen, Bert and Nickel, Joachim and Farrell, Eric and Brama, Pieter A. J. and van Osch, Gerjo J. V. M.}, title = {Effectiveness of BMP-2 and PDGF-BB adsorption onto a collagen/collagen-magnesium-hydroxyapatite scaffold in weight-bearing and non-weight-bearing osteochondral defect bone repair: in vitro, ex vivo and in vivo evaluation}, series = {Journal of Functional Biomaterials}, volume = {14}, journal = {Journal of Functional Biomaterials}, number = {2}, issn = {2079-4983}, doi = {10.3390/jfb14020111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304019}, year = {2023}, abstract = {Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects.}, language = {en} } @article{WeissenbergerWagenbrennerNickeletal.2023, author = {Weißenberger, Manuel and Wagenbrenner, Mike and Nickel, Joachim and Ahlbrecht, Rasmus and Blunk, Torsten and Steinert, Andre F. and Gilbert, Fabian}, title = {Comparative in vitro treatment of mesenchymal stromal cells with GDF-5 and R57A induces chondrogenic differentiation while limiting chondrogenic hypertrophy}, series = {Journal of Experimental Orthopaedics}, volume = {10}, journal = {Journal of Experimental Orthopaedics}, doi = {10.1186/s40634-023-00594-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357770}, year = {2023}, abstract = {Purpose Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs. Methods Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes. Results Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type. Conclusions R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1.}, language = {en} } @article{SulimanSunPedersenetal.2016, author = {Suliman, Salwa and Sun, Yang and Pedersen, Torbjorn O. and Xue, Ying and Nickel, Joachim and Waag, Thilo and Finne-Wistrand, Anna and Steinm{\"u}ller-Nethl, Doris and Krueger, Anke and Costea, Daniela E. and Mustafa, Kamal}, title = {In vivo host response and degradation of copolymer scaffolds functionalized with nanodiamonds and bone morphogenetic protein 2}, series = {Advanced Healthcare Materials}, volume = {5}, journal = {Advanced Healthcare Materials}, number = {6}, doi = {10.1002/adhm.201500723}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189764}, pages = {730-742}, year = {2016}, abstract = {The aim is to evaluate the effect of modifying poly[(L-lactide)-co-(epsilon-caprolactone)] scaffolds (PLCL) with nanodiamonds (nDP) or with nDP+physisorbed BMP-2 (nDP+BMP-2) on in vivo host tissue response and degradation. The scaffolds are implanted subcutaneously in Balb/c mice and retrieved after 1, 8, and 27 weeks. Molecular weight analysis shows that modified scaffolds degrade faster than the unmodified. Gene analysis at week 1 shows highest expression of proinflammatory markers around nDP scaffolds; although the presence of inflammatory cells and foreign body giant cells is more prominent around the PLCL. Tissue regeneration markers are highly expressed in the nDP+BMP-2 scaffolds at week 8. A fibrous capsule is detectable by week 8, thinnest around nDP scaffolds and at week 27 thickest around PLCL scaffolds. mRNA levels of ALP, COL1 alpha 2, and ANGPT1 are signifi cantly upregulating in the nDP+BMP-2 scaffolds at week 1 with ectopic bone seen at week 8. Even when almost 90\% of the scaffold is degraded at week 27, nDP are observable at implantation areas without adverse effects. In conclusion, modifying PLCL scaffolds with nDP does not aggravate the host response and physisorbed BMP-2 delivery attenuates infl ammation while lowering the dose of BMP-2 to a relatively safe and economical level.}, language = {en} } @article{SulimanMustafaKruegeretal.2016, author = {Suliman, Salwa and Mustafa, Kamal and Krueger, Anke and Steinm{\"u}ller-Nethl, Doris and Finne-Wistrand, Anna and Osdal, Tereza and Hamza, Amani O. and Sun, Yang and Parajuli, Himalaya and Waag, Thilo and Nickel, Joachim and Johannessen, Anne Christine and McCormack, Emmet and Costea, Daniela Elena}, title = {Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes}, series = {Biomaterials}, volume = {95}, journal = {Biomaterials}, doi = {10.1016/j.biomaterials.2016.04.002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188287}, pages = {11-21}, year = {2016}, abstract = {This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK\(^{Luc}\)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK\(^{Luc}\) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK\(^{Luc}\) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK\(^{Luc}\) both in vitro in 3D-OT and in vivo in xenografts formed by DOKLuc alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK\(^{Luc}\) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK\(^{Luc}\), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities.}, language = {en} } @article{StuckensenLamoEspinosaMuinosLopezetal.2019, author = {Stuckensen, Kai and Lamo-Espinosa, Jos{\´e} M. and Mui{\~n}os-L{\´o}pez, Emma and Ripalda-Cembor{\´a}in, Purificaci{\´o}n and L{\´o}pez-Mart{\´i}nez, Tania and Iglesias, Elena and Abizanda, Gloria and Andreu, Ion and Flandes-Iparraguirre, Mar{\´i}a and Pons-Villanueva, Juan and Elizalde, Reyes and Nickel, Joachim and Ewald, Andrea and Gbureck, Uwe and Pr{\´o}sper, Felipe and Groll, J{\"u}rgen and Granero-Molt{\´o}, Froil{\´a}n}, title = {Anisotropic cryostructured collagen scaffolds for efficient delivery of RhBMP-2 and enhanced bone regeneration}, series = {Materials}, volume = {12}, journal = {Materials}, number = {19}, issn = {1996-1944}, doi = {10.3390/ma12193105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195966}, year = {2019}, abstract = {In the treatment of bone non-unions, an alternative to bone autografts is the use of bone morphogenetic proteins (BMPs), e.g., BMP-2, BMP-7, with powerful osteoinductive and osteogenic properties. In clinical settings, these osteogenic factors are applied using absorbable collagen sponges for local controlled delivery. Major side effects of this strategy are derived from the supraphysiological doses of BMPs needed, which may induce ectopic bone formation, chronic inflammation, and excessive bone resorption. In order to increase the efficiency of the delivered BMPs, we designed cryostructured collagen scaffolds functionalized with hydroxyapatite, mimicking the structure of cortical bone (aligned porosity, anisotropic) or trabecular bone (random distributed porosity, isotropic). We hypothesize that an anisotropic structure would enhance the osteoconductive properties of the scaffolds by increasing the regenerative performance of the provided rhBMP-2. In vitro, both scaffolds presented similar mechanical properties, rhBMP-2 retention and delivery capacity, as well as scaffold degradation time. In vivo, anisotropic scaffolds demonstrated better bone regeneration capabilities in a rat femoral critical-size defect model by increasing the defect bridging. In conclusion, anisotropic cryostructured collagen scaffolds improve bone regeneration by increasing the efficiency of rhBMP-2 mediated bone healing.}, language = {en} } @article{SiverinoFahmyGarciaNiklausetal.2023, author = {Siverino, Claudia and Fahmy-Garcia, Shorouk and Niklaus, Viktoria and Kops, Nicole and Dolcini, Laura and Misciagna, Massimiliano Maraglino and Ridwan, Yanto and Farrell, Eric and van Osch, Gerjo J. V. M. and Nickel, Joachim}, title = {Addition of heparin binding sites strongly increases the bone forming capabilities of BMP9 in vivo}, series = {Bioactive Materials}, volume = {29}, journal = {Bioactive Materials}, doi = {10.1016/j.bioactmat.2023.07.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350470}, pages = {241-250}, year = {2023}, abstract = {Highlights • Despite not being crucial for bone development BMP9 can induce bone growth in vivo. • BMP9 induced bone formation is strongly enhanced by introduced heparin binding sites. • BMP9s bone forming capabilities are triggered by extracellular matrix binding. • Heparin binding BMP9 (BMP9 HB) can improve the current therapies in treating bone fractures. Abstract Bone Morphogenetic proteins (BMPs) like BMP2 and BMP7 have shown great potential in the treatment of severe bone defects. In recent in vitro studies, BMP9 revealed the highest osteogenic potential compared to other BMPs, possibly due to its unique signaling pathways that differs from other osteogenic BMPs. However, in vivo the bone forming capacity of BMP9-adsorbed scaffolds is not superior to BMP2 or BMP7. In silico analysis of the BMP9 protein sequence revealed that BMP9, in contrast to other osteogenic BMPs such as BMP2, completely lacks so-called heparin binding motifs that enable extracellular matrix (ECM) interactions which in general might be essential for the BMPs' osteogenic function. Therefore, we genetically engineered a new BMP9 variant by adding BMP2-derived heparin binding motifs to the N-terminal segment of BMP9′s mature part. The resulting protein (BMP9 HB) showed higher heparin binding affinity than BMP2, similar osteogenic activity in vitro and comparable binding affinities to BMPR-II and ALK1 compared to BMP9. However, remarkable differences were observed when BMP9 HB was adsorbed to collagen scaffolds and implanted subcutaneously in the dorsum of rats, showing a consistent and significant increase in bone volume and density compared to BMP2 and BMP9. Even at 10-fold lower BMP9 HB doses bone tissue formation was observed. This innovative approach of significantly enhancing the osteogenic properties of BMP9 simply by addition of ECM binding motifs, could constitute a valuable replacement to the commonly used BMPs. The possibility to use lower protein doses demonstrates BMP9 HB's high translational potential.}, language = {en} } @article{SiverinoFahmyGarciaMumcuogluetal.2022, author = {Siverino, Claudia and Fahmy-Garcia, Shorouk and Mumcuoglu, Didem and Oberwinkler, Heike and Muehlemann, Markus and Mueller, Thomas and Farrell, Eric and van Osch, Gerjo J. V. M. and Nickel, Joachim}, title = {Site-directed immobilization of an engineered bone morphogenetic protein 2 (BMP2) variant to collagen-based microspheres induces bone formation in vivo}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073928}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284572}, year = {2022}, abstract = {For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2′s bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs.}, language = {en} } @article{SeherNickelMuelleretal.2011, author = {Seher, Axel and Nickel, Joachim and Mueller, Thomas D. and Kneitz, Susanne and Gebhardt, Susanne and Meyer ter Vehn, Tobias and Schlunck, Guenther and Sebald, Walter}, title = {Gene expression profiling of connective tissue growth factor (CTGF) stimulated primary human tenon fibroblasts reveals an inflammatory and wound healing response in vitro}, series = {Molecular Vision}, volume = {17}, journal = {Molecular Vision}, number = {08. Okt}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140189}, pages = {53-62}, year = {2011}, abstract = {Purpose: The biologic relevance of human connective tissue growth factor (hCTGF) for primary human tenon fibroblasts (HTFs) was investigated by RNA expression profiling using affymetrix (TM) oligonucleotide array technology to identify genes that are regulated by hCTGF. Methods: Recombinant hCTGF was expressed in HEK293T cells and purified by affinity and gel chromatography. Specificity and biologic activity of hCTGF was confirmed by biosensor interaction analysis and proliferation assays. For RNA expression profiling HTFs were stimulated with hCTGF for 48h and analyzed using affymetrix (TM) oligonucleotide array technology. Results were validated by real time RT-PCR. Results: hCTGF induces various groups of genes responsible for a wound healing and inflammatory response in HTFs. A new subset of CTGF inducible inflammatory genes was discovered (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-X-C motif] ligand 6 [CXCL6], interleukin 6 [IL6], and interleukin 8 [IL8]). We also identified genes that can transmit the known biologic functions initiated by CTGF such as proliferation and extracellular matrix remodelling. Of special interest is a group of genes, e.g., osteoglycin (OGN) and osteomodulin (OMD), which are known to play a key role in osteoblast biology. Conclusions: This study specifies the important role of hCTGF for primary tenon fibroblast function. The RNA expression profile yields new insights into the relevance of hCTGF in influencing biologic processes like wound healing, inflammation, proliferation, and extracellular matrix remodelling in vitro via transcriptional regulation of specific genes. The results suggest that CTGF potentially acts as a modulating factor in inflammatory and wound healing response in fibroblasts of the human eye.}, language = {en} } @article{SeherLaglerStuehmeretal.2017, author = {Seher, Axel and Lagler, Charlotte and St{\"u}hmer, Thorsten and M{\"u}ller-Richter, Urs Dietmar Achim and K{\"u}bler, Alexander Christian and Sebald, Walter and M{\"u}ller, Thomas Dieter and Nickel, Joachim}, title = {Utilizing BMP-2 muteins for treatment of multiple myeloma}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0174884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158144}, pages = {e0174884}, year = {2017}, abstract = {Multiple myeloma (MM) represents a haematological cancer characterized by the pathological hyper proliferation of antibody-producing B-lymphocytes. Patients typically suffer from kidney malfunction and skeletal disorders. In the context of MM, the transforming growth factor β (TGFβ) member Activin A was recently identified as a promoter of both accompanying symptoms. Because studies have shown that bone morphogenetic protein (BMP)-2-mediated activities are counteracted by Activin A, we analysed whether BMP2, which also binds to the Activin A receptors ActRII and ActRIIB but activates the alternative SMAD-1/5/8 pathway, can be used to antagonize Activin A activities, such as in the context of MM. Therefore three BMP2 derivatives were generated with modified binding activities for the type II (ActRIIB) and/or type I receptor (BMPRIA) showing either increased or decreased BMP2 activity. In the context of MM these BMP2 muteins show two functionalities since they act as a) an anti-proliferative/apoptotic agent against neoplastic B-cells, b) as a bone-formation promoting growth factor. The molecular basis of both activities was shown in two different cellular models to clearly rely on the properties of the investigated BMP2 muteins to compete for the binding of Activin A to the Activin type II receptors. The experimental outcome suggests new therapeutic strategies using BMP2 variants in the treatment of MM-related pathologies.}, language = {en} } @article{SchliermannNickel2018, author = {Schliermann, Anna and Nickel, Joachim}, title = {Unraveling the connection between fibroblast growth factor and bone morphogenetic protein signaling}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {10}, issn = {1422-0067}, doi = {10.3390/ijms19103220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177358}, year = {2018}, abstract = {Ontogeny of higher organisms as well the regulation of tissue homeostasis in adult individuals requires a fine-balanced interplay of regulating factors that individually trigger the fate of particular cells to either stay undifferentiated or to differentiate towards distinct tissue specific lineages. In some cases, these factors act synergistically to promote certain cellular responses, whereas in other tissues the same factors antagonize each other. However, the molecular basis of this obvious dual signaling activity is still only poorly understood. Bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are two major signal protein families that have a lot in common: They are both highly preserved between different species, involved in essential cellular functions, and their ligands vastly outnumber their receptors, making extensive signal regulation necessary. In this review we discuss where and how BMP and FGF signaling cross paths. The compiled data reflect that both factors synchronously act in many tissues, and that antagonism and synergism both exist in a context-dependent manner. Therefore, by challenging a generalization of the connection between these two pathways a new chapter in BMP FGF signaling research will be introduced.}, language = {en} }