@article{BatoolSaeedSaleemetal.2021, author = {Batool, Farwa and Saeed, Muhammad and Saleem, Hafiza Nosheen and Kirschner, Luisa and Bodem, Jochen}, title = {Facile synthesis and in vitro activity of N-substituted 1,2-benzisothiazol-3(2H)-ones against dengue virus NS2BNS3 protease}, series = {Pathogens}, volume = {10}, journal = {Pathogens}, number = {4}, issn = {2076-0817}, doi = {10.3390/pathogens10040464}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236605}, year = {2021}, abstract = {Several new N-substituted 1,2-benzisothiazol-3(2H)-ones (BITs) were synthesised through a facile synthetic route for testing their anti-dengue protease inhibition. Contrary to the conventional multistep synthesis, we achieved structurally diverse BITs with excellent yields using a two-step, one-pot reaction strategy. All the synthesised compounds were prescreened for drug-like properties using the online Swiss Absorption, Distribution, Metabolism and Elimination (SwissADME) model, indicating their favourable pharmaceutical properties. Thus, the synthesised BITs were tested for inhibitory activity against the recombinant dengue virus serotype-2 (DENV-2) NS2BNS3 protease. Dose-response experiments and computational docking analyses revealed that several BITs bind to the protease in the vicinity of the catalytic triad with IC\(_{50}\) values in the micromolar range. The DENV2 infection assay showed that two BITs, 2-(2-chlorophenyl)benzo[d]isothiazol-3(2H)-one and 2-(2,6-dichlorophenyl)benzo[d]isothiazol-3(2H)-one, could suppress DENV replication and virus infectivity. These results indicate the potential of BITs for developing new anti-dengue therapeutics.}, language = {en} } @article{SchneiderCoronaSpoeringetal.2016, author = {Schneider, Anna and Corona, Angela and Sp{\"o}ring, Imke and Jordan, Mareike and Buchholz, Bernd and Maccioni, Elias and Di Santo, Roberto and Bodem, Jochen and Tramontano, Enzo and W{\"o}hrl, Birgitta M.}, title = {Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors}, series = {Nucleic Acids Research}, volume = {44}, journal = {Nucleic Acids Research}, number = {5}, doi = {10.1093/nar/gkw060}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166423}, pages = {2310-2322}, year = {2016}, abstract = {We analyzed a multi-drug resistant (MR) HIV-1 reverse transcriptase (RT), subcloned from a patient-derived subtype CRF02_AG, harboring 45 amino acid exchanges, amongst them four thymidine analog mutations (TAMs) relevant for high-level AZT (azidothymidine) resistance by AZTMP excision (M41L, D67N, T215Y, K219E) as well as four substitutions of the AZTTP discrimination pathway (A62V, V75I, F116Y and Q151M). In addition, K65R, known to antagonize AZTMP excision in HIV-1 subtype B was present. Although MR-RT harbored the most significant amino acid exchanges T215Y and Q151M of each pathway, it exclusively used AZTTP discrimination, indicating that the two mechanisms are mutually exclusive and that the Q151M pathway is obviously preferred since it confers resistance to most nucleoside inhibitors. A derivative was created, additionally harboring the TAM K70R and the reversions M151Q as well as R65K since K65R antagonizes excision. MR-R65K-K70R-M151Q was competent of AZTMP excision, whereas other combinations thereof with only one or two exchanges still promoted discrimination. To tackle the multi-drug resistance problem, we tested if the MR-RTs could still be inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors belonging to different inhibitor classes, indicating the importance of developing RNase H inhibitors further as anti-HIV drugs.}, language = {en} } @article{LiuHanBlairetal.2021, author = {Liu, Fengming and Han, Kun and Blair, Robert and Kenst, Kornelia and Qin, Zhongnan and Upcin, Berin and W{\"o}rsd{\"o}rfer, Philipp and Midkiff, Cecily C. and Mudd, Joseph and Belyaeva, Elizaveta and Milligan, Nicholas S. and Rorison, Tyler D. and Wagner, Nicole and Bodem, Jochen and D{\"o}lken, Lars and Aktas, Bertal H. and Vander Heide, Richard S. and Yin, Xiao-Ming and Kolls, Jay K. and Roy, Chad J. and Rappaport, Jay and Erg{\"u}n, S{\"u}leyman and Qin, Xuebin}, title = {SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.701278}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241948}, year = {2021}, abstract = {SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure.}, language = {en} } @article{MoschallDenkErkelenzetal.2017, author = {Moschall, Rebecca and Denk, Sarah and Erkelenz, Steffen and Schenk, Christian and Schaal, Heiner and Bodem, Jochen}, title = {A purine-rich element in foamy virus pol regulates env splicing and gag/pol expression}, series = {Retrovirology}, volume = {14}, journal = {Retrovirology}, number = {10}, doi = {10.1186/s12977-017-0337-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157614}, year = {2017}, abstract = {Background: The foamy viral genome encodes four central purine-rich elements localized in the integrase-coding region of pol. Previously, we have shown that the first two of these RNA elements (A and B) are required for protease dimerization and activation. The D element functions as internal polypurine tract during reverse transcription. Peters et al., described the third element (C) as essential for gag expression suggesting that it might serve as an RNA export element for the unspliced genomic transcript. Results: Here, we analysed env splicing and demonstrate that the described C element composed of three GAA repeats known to bind SR proteins regulates env splicing, thus balancing the amount of gag/pol mRNAs. Deletion of the C element effectively promotes a splice site switch from a newly identified env splice acceptor to the intrinsically strong downstream localised env 3′ splice acceptor permitting complete splicing of almost all LTR derived transcripts. We provide evidence that repression of this env splice acceptor is a prerequisite for gag expression. This repression is achieved by the C element, resulting in impaired branch point recognition and SF1/mBBP binding. Separating the branch point from the overlapping purine-rich C element, by insertion of only 20 nucleotides, liberated repression and fully restored splicing to the intrinsically strong env 3′ splice site. This indicated that the cis-acting element might repress splicing by blocking the recognition of essential splice site signals. Conclusions: The foamy viral purine-rich C element regulates splicing by suppressing the branch point recognition of the strongest env splice acceptor. It is essential for the formation of unspliced gag and singly spliced pol transcripts.}, language = {en} } @article{SivarajanOberwinklerRolletal.2022, author = {Sivarajan, Rinu and Oberwinkler, Heike and Roll, Valeria and K{\"o}nig, Eva-Maria and Steinke, Maria and Bodem, Jochen}, title = {A defined anthocyanin mixture sourced from bilberry and black currant inhibits Measles virus and various herpesviruses}, series = {BMC Complementary Medicine and Therapies}, volume = {22}, journal = {BMC Complementary Medicine and Therapies}, doi = {10.1186/s12906-022-03661-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301423}, year = {2022}, abstract = {Background Anthocyanin-containing plant extracts and carotenoids, such as astaxanthin, have been well-known for their antiviral and anti-inflammatory activity, respectively. We hypothesised that a mixture of Ribes nigrum L. (Grossulariaceae) (common name black currant (BC)) and Vaccinium myrtillus L. (Ericaceae) (common name bilberry (BL)) extracts (BC/BL) with standardised anthocyanin content as well as single plant extracts interfered with the replication of Measles virus and Herpesviruses in vitro. Methods We treated cell cultures with BC/BL or defined single plant extracts, purified anthocyanins and astaxanthin in different concentrations and subsequently infected the cultures with the Measles virus (wild-type or vaccine strain Edmonston), Herpesvirus 1 or 8, or murine Cytomegalovirus. Then, we analysed the number of infected cells and viral infectivity and compared the data to non-treated controls. Results The BC/BL extract inhibited wild-type Measles virus replication, syncytia formation and cell-to-cell spread. This suppression was dependent on the wild-type virus-receptor-interaction since the Measles vaccine strain was unaffected by BC/BL treatment. Furthermore, the evidence was provided that the delphinidin-3-rutinoside chloride, a component of BC/BL, and purified astaxanthin, were effective anti-Measles virus compounds. Human Herpesvirus 1 and murine Cytomegalovirus replication was inhibited by BC/BL, single bilberry or black currant extracts, and the BC/BL component delphinidin-3-glucoside chloride. Additionally, we observed that BC/BL seemed to act synergistically with aciclovir. Moreover, BC/BL, the single bilberry and black currant extracts, and the BC/BL components delphinidin-3-glucoside chloride, cyanidin-3-glucoside, delphinidin-3-rutinoside chloride, and petunidin-3-galactoside inhibited human Herpesvirus 8 replication. Conclusions Our data indicate that Measles viruses and Herpesviruses are differentially susceptible to a specific BC/BL mixture, single plant extracts, purified anthocyanins and astaxanthin. These compounds might be used in the prevention of viral diseases and in addition to direct-acting antivirals, such as aciclovir.}, language = {en} } @article{WeissbachHerediaGuerreroBarnsteineretal.2020, author = {Weißbach, Susann and Heredia-Guerrero, Sofia Catalina and Barnsteiner, Stefanie and Großhans, Lukas and Bodem, Jochen and Starz, Hanna and Langer, Christian and Appenzeller, Silke and Knop, Stefan and Steinbrunn, Torsten and Rost, Simone and Einsele, Hermann and Bargou, Ralf Christian and Rosenwald, Andreas and St{\"u}hmer, Thorsten and Leich, Ellen}, title = {Exon-4 Mutations in KRAS Affect MEK/ERK and PI3K/AKT Signaling in Human Multiple Myeloma Cell Lines}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers12020455}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200617}, year = {2020}, abstract = {Approximately 20\% of multiple myeloma (MM) cases harbor a point mutation in KRAS. However, there is still no final consent on whether KRAS-mutations are associated with disease outcome. Specifically, no data exist on whether KRAS-mutations have an impact on survival of MM patients at diagnosis in the era of novel agents. Direct blockade of KRAS for therapeutic purposes is mostly impossible, but recently a mutation-specific covalent inhibitor targeting KRAS\(^{p.G12C}\) entered into clinical trials. However, other KRAS hotspot-mutations exist in MM patients, including the less common exon-4 mutations. For the current study, the coding regions of KRAS were deep-sequenced in 80 newly diagnosed MM patients, uniformely treated with three cycles of bortezomib plus dexamethasone and cyclophosphamide (VCD)-induction, followed by high-dose chemotherapy and autologous stem cell transplantation. Moreover, the functional impact of KRAS\(^{p.G12A}\) and the exon-4 mutations p.A146T and p.A146V on different survival pathways was investigated. Specifically, KRAS\(^{WT}\), KRAS\(^{p.G12A}\), KRAS\(^{p.A146T}\), and KRAS\(^{p.A146V}\) were overexpressed in HEK293 cells and the KRAS\(^{WT}\) MM cell lines JJN3 and OPM2 using lentiviral transduction and the Sleeping Beauty vector system. Even though KRAS-mutations were not correlated with survival, all KRAS-mutants were found capable of potentially activating MEK/ERK- and sustaining PI3K/AKT-signaling in MM cells.}, language = {en} } @article{SilvaVilchesPletinckxLohnertetal.2017, author = {Silva-Vilches, Cinthia and Pletinckx, Katrien and Lohnert, Miriam and Pavlovic, Vladimir and Ashour, Diyaaeldin and John, Vini and Vendelova, Emilia and Kneitz, Susanne and Zhou, Jie and Chen, Rena and Reinheckel, Thomas and Mueller, Thomas D. and Bodem, Jochen and Lutz, Manfred B.}, title = {Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0178114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158244}, pages = {e0178114}, year = {2017}, abstract = {Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3\(^{+}\) induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CT\(^{hi}\), CT\(^{lo}\)) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β). Only DCs matured under CT\(^{hi}\) conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CT\(^{lo}\)- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3\(^{+}\) iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CT\(^{lo}\)- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE) by inducing Foxp3\(^{+}\) Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae.}, language = {en} } @article{GeigerKoenigOberwinkleretal.2022, author = {Geiger, Nina and K{\"o}nig, Eva-Maria and Oberwinkler, Heike and Roll, Valeria and Diesendorf, Viktoria and F{\"a}hr, Sofie and Obernolte, Helena and Sewald, Katherina and Wronski, Sabine and Steinke, Maria and Bodem, Jochen}, title = {Acetylsalicylic acid and salicylic acid inhibit SARS-CoV-2 replication in precision-cut lung slices}, series = {Vaccines}, volume = {10}, journal = {Vaccines}, number = {10}, issn = {2076-393X}, doi = {10.3390/vaccines10101619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289885}, year = {2022}, abstract = {Aspirin, with its active compound acetylsalicylic acid (ASA), shows antiviral activity against rhino- and influenza viruses at high concentrations. We sought to investigate whether ASA and its metabolite salicylic acid (SA) inhibit SARS-CoV-2 since it might use similar pathways to influenza viruses. The compound-treated cells were infected with SARS-CoV-2. Viral replication was analysed by RTqPCR. The compounds suppressed SARS-CoV-2 replication in cell culture cells and a patient-near replication system using human precision-cut lung slices by two orders of magnitude. While the compounds did not interfere with viral entry, it led to lower viral RNA expression after 24 h, indicating that post-entry pathways were inhibited by the compounds.}, language = {en} } @article{AvotaBodemChithelenetal.2021, author = {Avota, Elita and Bodem, Jochen and Chithelen, Janice and Mandasari, Putri and Beyersdorf, Niklas and Schneider-Schaulies, J{\"u}rgen}, title = {The Manifold Roles of Sphingolipids in Viral Infections}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2021.715527}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246975}, year = {2021}, abstract = {Sphingolipids are essential components of eukaryotic cells. In this review, we want to exemplarily illustrate what is known about the interactions of sphingolipids with various viruses at different steps of their replication cycles. This includes structural interactions during entry at the plasma membrane or endosomal membranes, early interactions leading to sphingolipid-mediated signal transduction, interactions with internal membranes and lipids during replication, and interactions during virus assembly and budding. Targeted interventions in sphingolipid metabolism - as far as they can be tolerated by cells and organisms - may open novel possibilities to support antiviral therapies. Human immunodeficiency virus type 1 (HIV-1) infections have intensively been studied, but for other viral infections, such as influenza A virus (IAV), measles virus (MV), hepatitis C virus (HCV), dengue virus, Ebola virus, and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), investigations are still in their beginnings. As many inhibitors of sphingolipid metabolism are already in clinical use against other diseases, repurposing studies for applications in some viral infections appear to be a promising approach.}, language = {en} } @article{ZimniakKirschnerHilpertetal.2021, author = {Zimniak, Melissa and Kirschner, Luisa and Hilpert, Helen and Geiger, Nina and Danov, Olga and Oberwinkler, Heike and Steinke, Maria and Sewald, Katherina and Seibel, J{\"u}rgen and Bodem, Jochen}, title = {The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-85049-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259820}, pages = {5890}, year = {2021}, abstract = {To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8 mu g/ml significantly in these screenings, and the EC50 was determined with 387 ng/ml. Furthermore, Fluoxetine reduced viral infectivity in precision-cut human lung slices showing its activity in relevant human tissue targeted in severe infections. Fluoxetine treatment resulted in a decrease in viral protein expression. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus, indicating that the R-form might specifically be used for SARS-CoV-2 treatment. Fluoxetine inhibited neither Rabies virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex virus type 1 gene expression, indicating that it acts virus-specific. Moreover, since it is known that Fluoxetine inhibits cytokine release, we see the role of Fluoxetine in the treatment of SARS-CoV-2 infected patients of risk groups.}, language = {en} }