@article{ChopraBiehlSteinfattetal.2016, author = {Chopra, Martin and Biehl, Marlene and Steinfatt, Tim and Brandl, Andreas and Kums, Juliane and Amich, Jorge and Vaeth, Martin and Kuen, Janina and Holtappels, Rafaela and Podlech, J{\"u}rgen and Mottok, Anja and Kraus, Sabrina and Jord{\´a}n-Garotte, Ana-Laura and B{\"a}uerlein, Carina A. and Brede, Christian and Ribechini, Eliana and Fick, Andrea and Seher, Axel and Polz, Johannes and Ottmueller, Katja J. and Baker, Jeannette and Nishikii, Hidekazu and Ritz, Miriam and Mattenheimer, Katharina and Schwinn, Stefanie and Winter, Thorsten and Sch{\"a}fer, Viktoria and Krappmann, Sven and Einsele, Hermann and M{\"u}ller, Thomas D. and Reddehase, Matthias J. and Lutz, Manfred B. and M{\"a}nnel, Daniela N. and Berberich-Siebelt, Friederike and Wajant, Harald and Beilhack, Andreas}, title = {Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion}, series = {Journal of Experimental Medicine}, volume = {213}, journal = {Journal of Experimental Medicine}, number = {9}, doi = {10.1084/jem.20151563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187640}, pages = {1881-1900}, year = {2016}, abstract = {Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.}, language = {en} } @article{DufnerKesslerJustetal.2022, author = {Dufner, Vera and Kessler, Almuth Friederike and Just, Larissa and Hau, Peter and Bumes, Elisabeth and Pels, Hendrik Johannes and Grauer, Oliver Martin and Wiese, Bettina and L{\"o}hr, Mario and Jordan, Karin and Strik, Herwig}, title = {The emesis trial: depressive glioma patients are more affected by chemotherapy-induced nausea and vomiting}, series = {Frontiers in Neurology}, volume = {13}, journal = {Frontiers in Neurology}, issn = {1664-2295}, doi = {10.3389/fneur.2022.773265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262859}, year = {2022}, abstract = {Purpose Glioma patients face a limited life expectancy and at the same time, they suffer from afflicting symptoms and undesired effects of tumor treatment. Apart from bone marrow suppression, standard chemotherapy with temozolomide causes nausea, emesis and loss of appetite. In this pilot study, we investigated how chemotherapy-induced nausea and vomiting (CINV) affects the patients' levels of depression and their quality of life. Methods In this prospective observational multicentre study (n = 87), nausea, emesis and loss of appetite were evaluated with an expanded MASCC questionnaire, covering 10 days during the first and the second cycle of chemotherapy. Quality of life was assessed with the EORTC QLQ-C30 and BN 20 questionnaire and levels of depression with the PHQ-9 inventory before and after the first and second cycle of chemotherapy. Results CINV affected a minor part of patients. If present, it reached its maximum at day 3 and decreased to baseline level not before day 8. Levels of depression increased significantly after the first cycle of chemotherapy, but decreased during the further course of treatment. Patients with higher levels of depression were more severely affected by CINV and showed a lower quality of life through all time-points. Conclusion We conclude that symptoms of depression should be perceived in advance and treated in order to avoid more severe side effects of tumor treatment. Additionally, in affected patients, delayed nausea was most prominent, pointing toward an activation of the NK1 receptor. We conclude that long acting antiemetics are necessary totreat temozolomide-induced nausea.}, language = {en} } @article{KuschBornscheinLorethetal.2018, author = {Kusch, Valentin and Bornschein, Grit and Loreth, Desiree and Bank, Julia and Jordan, Johannes and Baur, David and Watanabe, Masahiko and Kulik, Akos and Heckmann, Manfred and Eilers, Jens and Schmidt, Hartmut}, title = {Munc13-3 Is Required for the Developmental Localization of Ca2+ Channels to Active Zones and the Nanopositioning of Cav2.1 Near Release Sensors}, series = {Cell Reports}, volume = {22}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2018.02.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233468}, pages = {1965-1973}, year = {2018}, abstract = {Spatial relationships between Cav channels and release sensors at active zones (AZs) are a major determinant of synaptic fidelity. They are regulated developmentally, but the underlying molecular mechanisms are largely unclear. Here, we show that Munc13-3 regulates the density of Cav2.1 and Cav2.2 channels, alters the localization of Cav2.1, and is required for the development of tight, nanodomain coupling at parallel-fiber AZs. We combined EGTA application and Ca2+-channel pharmacology in electrophysiological and two-photon Ca2+ imaging experiments with quantitative freeze-fracture immunoelectron microscopy and mathematical modeling. We found that a normally occurring developmental shift from release being dominated by Ca2+ influx through Cav2.1 and Cav2.2 channels with domain overlap and loose coupling (microdomains) to a nanodomain Cav2.1 to sensor coupling is impaired in Munc13-3-deficient synapses. Thus, at AZs lacking Munc13-3, release remained triggered by Cav2.1 and Cav2.2 microdomains, suggesting a critical role of Munc13-3 in the formation of release sites with calcium channel nanodomains.}, language = {en} }