@article{SchilbachAlkhaledWelkeretal.2015, author = {Schilbach, Karin and Alkhaled, Mohammed and Welker, Christian and Eckert, Franziska and Blank, Gregor and Ziegler, Hendrik and Sterk, Marco and M{\"u}ller, Friederike and Sonntag, Katja and Wieder, Thomas and Braum{\"u}ller, Heidi and Schmitt, Julia and Eyrich, Matthias and Schleicher, Sabine and Seitz, Christian and Erbacher, Annika and Pichler, Bernd J. and M{\"u}ller, Hartmut and Tighe, Robert and Lim, Annick and Gillies, Stephen D. and Strittmatter, Wolfgang and R{\"o}cken, Martin and Handgretinger, Rupert}, title = {Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation}, series = {OncoImmunology}, volume = {4}, journal = {OncoImmunology}, number = {7}, doi = {10.1080/2162402X.2015.1014760}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154579}, pages = {e1014760}, year = {2015}, abstract = {Stimulating the immune system to attack cancer is a promising approach, even for the control of advanced cancers. Several cytokines that promote interferon-γ-dominated immune responses show antitumor activity, with interleukin 12 (IL-12) being of major importance. Here, we used an antibody-IL-12 fusion protein (NHS-IL12) that binds histones of necrotic cells to treat human sarcoma in humanized mice. Following sarcoma engraftment, NHS-IL12 therapy was combined with either engineered IL-7 (FcIL-7) or IL-2 (IL-2MAB602) for continuous cytokine bioavailability. NHS-IL12 strongly induced innate and adaptive antitumor immunity when combined with IL-7 or IL-2. NHS-IL12 therapy significantly improved survival of sarcoma-bearing mice and caused long-term remissions when combined with IL-2. NHS-IL12 induced pronounced cancer cell senescence, as documented by strong expression of senescence-associated p16\(^{INK4a}\) and nuclear translocation of p-HP1γ, and permanent arrest of cancer cell proliferation. In addition, this cancer immunotherapy initiated the induction of myogenic differentiation, further promoting the hypothesis that efficient antitumor immunity includes mechanisms different from cytotoxicity for efficient cancer control in vivo.}, language = {en} } @article{EstradaKrebbersVossetal.2018, author = {Estrada, Veronica and Krebbers, Julia and Voss, Christian and Brazda, Nicole and Blazyca, Heinrich and Illgen, Jennifer and Seide, Klaus and J{\"u}rgens, Christian and M{\"u}ller, J{\"o}rg and Martini, Rudolf and Trieu, Hoc Khiem and M{\"u}ller, Hans Werner}, title = {Low-pressure micro-mechanical re-adaptation device sustainably and effectively improves locomotor recovery from complete spinal cord injury}, series = {Communications Biology}, volume = {1}, journal = {Communications Biology}, doi = {10.1038/s42003-018-0210-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227357}, year = {2018}, abstract = {Traumatic spinal cord injuries result in impairment or even complete loss of motor, sensory and autonomic functions. Recovery after complete spinal cord injury is very limited even in animal models receiving elaborate combinatorial treatments. Recently, we described an implantable microsystem (microconnector) for low-pressure re-adaption of severed spinal stumps in rat. Here we investigate the long-term structural and functional outcome following microconnector implantation after complete spinal cord transection. Re-adaptation of spinal stumps supports formation of a tissue bridge, glial and vascular cell invasion, motor axon regeneration and myelination, resulting in partial recovery of motor-evoked potentials and a thus far unmet improvement of locomotor behaviour. The recovery lasts for at least 5 months. Despite a late partial decline, motor recovery remains significantly superior to controls. Our findings demonstrate that microsystem technology can foster long-lasting functional improvement after complete spinal injury, providing a new and effective tool for combinatorial therapies.}, language = {en} } @article{MaierhoferFlunkertOshimaetal.2019, author = {Maierhofer, Anna and Flunkert, Julia and Oshima, Junko and Martin, George M. and Poot, Martin and Nanda, Indrajit and Dittrich, Marcus and M{\"u}ller, Tobias and Haaf, Thomas}, title = {Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes}, series = {Aging Cell}, volume = {18}, journal = {Aging Cell}, doi = {10.1111/acel.12995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202733}, pages = {e12995}, year = {2019}, abstract = {Werner Syndrome (WS) is an adult-onset segmental progeroid syndrome. Bisulfite pyrosequencing of repetitive DNA families revealed comparable blood DNA methylation levels between classical (18 WRN-mutant) or atypical WS (3 LMNA-mutant and 3 POLD1-mutant) patients and age- and sex-matched controls. WS was not associated with either age-related accelerated global losses of ALU, LINE1, and α-satellite DNA methylations or gains of rDNA methylation. Single CpG methylation was analyzed with Infinium MethylationEPIC arrays. In a correspondence analysis, atypical WS samples clustered together with the controls and were clearly separated from classical WS, consistent with distinct epigenetic pathologies. In classical WS, we identified 659 differentially methylated regions (DMRs) comprising 3,656 CpG sites and 613 RefSeq genes. The top DMR was located in the HOXA4 promoter. Additional DMR genes included LMNA, POLD1, and 132 genes which have been reported to be differentially expressed in WRN-mutant/depleted cells. DMRs were enriched in genes with molecular functions linked to transcription factor activity and sequence-specific DNA binding to promoters transcribed by RNA polymerase II. We propose that transcriptional misregulation of downstream genes by the absence of WRN protein contributes to the variable premature aging phenotypes of WS. There were no CpG sites showing significant differences in DNA methylation changes with age between WS patients and controls. Genes with both WS- and age-related methylation changes exhibited a constant offset of methylation between WRN-mutant patients and controls across the entire analyzed age range. WS-specific epigenetic signatures occur early in life and do not simply reflect an acceleration of normal epigenetic aging processes.}, language = {en} } @article{ElHajjDittrichBoecketal.2016, author = {El Hajj, Nady and Dittrich, Marcus and B{\"o}ck, Julia and Kraus, Theo F. J. and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and Schneider, Eberhard and Haaf, Thomas}, title = {Epigenetic dysregulation in the developing Down syndrome cortex}, series = {Epigenetics}, volume = {11}, journal = {Epigenetics}, number = {8}, doi = {10.1080/15592294.2016.1192736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191239}, pages = {563-578}, year = {2016}, abstract = {Using Illumina 450K arrays, 1.85\% of all analyzed CpG sites were significantly hypermethylated and 0.31\% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.}, language = {en} } @article{DotterweichTowerBrandletal.2016, author = {Dotterweich, Julia and Tower, Robert J. and Brandl, Andreas and M{\"u}ller, Marc and Hofbauer, Lorenz C. and Beilhack, Andreas and Ebert, Regina and Gl{\"u}er, Claus C. and Tiwari, Sanjay and Sch{\"u}tze, Norbert and Jakob, Franz}, title = {The KISS1 Receptor as an In Vivo Microenvironment Imaging Biomarker of Multiple Myeloma Bone Disease}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {5}, doi = {10.1371/journal.pone.0155087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146960}, pages = {e0155087}, year = {2016}, abstract = {Multiple myeloma is one of the most common hematological diseases and is characterized by an aberrant proliferation of plasma cells within the bone marrow. As a result of crosstalk between cancer cells and the bone microenvironment, bone homeostasis is disrupted leading to osteolytic lesions and poor prognosis. Current diagnostic strategies for myeloma typically rely on detection of excess monoclonal immunoglobulins or light chains in the urine or serum. However, these strategies fail to localize the sites of malignancies. In this study we sought to identify novel biomarkers of myeloma bone disease which could target the malignant cells and/or the surrounding cells of the tumor microenvironment. From these studies, the KISS1 receptor (KISS1R), a G-protein-coupled receptor known to play a role in the regulation of endocrine functions, was identified as a target gene that was upregulated on mesenchymal stem cells (MSCs) and osteoprogenitor cells (OPCs) when co-cultured with myeloma cells. To determine the potential of this receptor as a biomarker, in vitro and in vivo studies were performed with the KISS1R ligand, kisspeptin, conjugated with a fluorescent dye. In vitro microscopy showed binding of fluorescently-labeled kisspeptin to both myeloma cells as well as MSCs under direct co-culture conditions. Next, conjugated kisspeptin was injected into immune-competent mice containing myeloma bone lesions. Tumor-burdened limbs showed increased peak fluorescence compared to contralateral controls. These data suggest the utility of the KISS1R as a novel biomarker for multiple myeloma, capable of targeting both tumor cells and host cells of the tumor microenvironment.}, language = {en} } @article{TonyBurmesterSchulzeKoopsetal.2011, author = {Tony, Hans-Peter and Burmester, Gerd and Schulze-Koops, Hendrik and Grunke, Mathias and Henes, Joerg and K{\"o}tter, Ina and Haas, Judith and Unger, Leonore and Lovric, Svjetlana and Haubitz, Marion and Fischer-Betz, Rebecca and Chehab, Gamal and Rubbert-Roth, Andrea and Specker, Christof and Weinerth, Jutta and Holle, Julia and M{\"u}ller-Ladner, Ulf and K{\"o}nig, Ramona and Fiehn, Christoph and Burgwinkel, Philip and Budde, Klemens and S{\"o}rensen, Helmut and Meurer, Michael and Aringer, Martin and Kieseier, Bernd and Erfurt-Berge, Cornelia and Sticherling, Michael and Veelken, Roland and Ziemann, Ulf and Strutz, Frank and von Wussow, Praxis and Meier, Florian MP and Hunzelmann, Nico and Schmidt, Enno and Bergner, Raoul and Schwarting, Andreas and Eming, R{\"u}diger and Schwarz-Eywill, Michael and Wassenberg, Siegfried and Fleck, Martin and Metzler, Claudia and Zettl, Uwe and Westphal, Jens and Heitmann, Stefan and Herzog, Anna L. and Wiendl, Heinz and Jakob, Waltraud and Schmidt, Elvira and Freivogel, Klaus and D{\"o}rner, Thomas and Hertl, Michael and Stadler, Rudolf}, title = {Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID)}, series = {Arthritis Research \& Therapy}, volume = {13}, journal = {Arthritis Research \& Therapy}, number = {R75}, doi = {10.1186/ar3337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142856}, pages = {1-14}, year = {2011}, abstract = {Introduction: Evidence from a number of open-label, uncontrolled studies has suggested that rituximab may benefit patients with autoimmune diseases who are refractory to standard-of-care. The objective of this study was to evaluate the safety and clinical outcomes of rituximab in several standard-of-care-refractory autoimmune diseases (within rheumatology, nephrology, dermatology and neurology) other than rheumatoid arthritis or non-Hodgkin's lymphoma in a real-life clinical setting. Methods: Patients who received rituximab having shown an inadequate response to standard-of-care had their safety and clinical outcomes data retrospectively analysed as part of the German Registry of Autoimmune Diseases. The main outcome measures were safety and clinical response, as judged at the discretion of the investigators. Results: A total of 370 patients (299 patient-years) with various autoimmune diseases (23.0\% with systemic lupus erythematosus, 15.7\% antineutrophil cytoplasmic antibody-associated granulomatous vasculitides, 15.1\% multiple sclerosis and 10.0\% pemphigus) from 42 centres received a mean dose of 2,440 mg of rituximab over a median (range) of 194 (180 to 1,407) days. The overall rate of serious infections was 5.3 per 100 patient-years during rituximab therapy. Opportunistic infections were infrequent across the whole study population, and mostly occurred in patients with systemic lupus erythematosus. There were 11 deaths (3.0\% of patients) after rituximab treatment (mean 11.6 months after first infusion, range 0.8 to 31.3 months), with most of the deaths caused by infections. Overall (n = 293), 13.3\% of patients showed no response, 45.1\% showed a partial response and 41.6\% showed a complete response. Responses were also reflected by reduced use of glucocorticoids and various immunosuppressives during rituximab therapy and follow-up compared with before rituximab. Rituximab generally had a positive effect on patient well-being (physician's visual analogue scale; mean improvement from baseline of 12.1 mm)}, language = {en} } @article{SterkenburgHoffmannReicheletal.2016, author = {Sterkenburg, Anthe S. and Hoffmann, Anika and Reichel, Julia and Lohle, Kristin and Eveslage, Maria and Warmuth-Metz, Monika and M{\"u}ller, Hermann L.}, title = {Nuchal skinfold thickness: A novel parameter for assessment of body composition in childhood craniopharyngioma}, series = {Journal of Clinical Endocrinology \& Metabolism}, volume = {101}, journal = {Journal of Clinical Endocrinology \& Metabolism}, number = {12}, doi = {10.1210/jc.2016-2547}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186562}, pages = {4922-4930}, year = {2016}, abstract = {Context: Hypothalamic obesity, cardiovascular disease (CVD), and relapse/progression have a major impact on prognosis in childhood-onset craniopharyngioma (CP). We analyzed nuchal skinfold thickness (NST) on magnetic resonance imaging performed for follow-up monitoring as a novel parameter for body composition (BC) and CVD in CP. Objective: The objective of the study was to identify the association of NST with body mass index (BMI), waist to height ratio (WHtR), functional capacity, and blood pressure (BP) in CP and controls. Design: This was a cross-sectional and longitudinal prospective study in CP patients. Setting: The study was conducted at HIT-Endo, KRANIOPHARYNGEOM 2000/2007. Patients: Participants included 94 CP patients and 75 controls. Interventions: There were no interventions. Main Outcome Measures: Association of NST with BC and BP in 43 CP and 43 controls was measured. Results: NST correlated with BMI SD score (SDS; r = 0.78; P = .001; n = 169) and WHtR (r = 0.85; P = .001; n = 86) in the total cohort and CP patients (NST-BMI SDS: r = 0.77, P = .001, n = 94); NST-WHtR: r = 0.835, P = .001, n = 43) and controls (NST-BMI SDS: r = 0.792, P = .001, n = 75; NST-WHtR: r = 0.671, P = .001, n = 43). In CP, systolic BP correlated with NST (r = 0.575, P = .001), BMI SDS (r = 0.434, P = .004), and WHtR (r = 0.386, P = .011). Similar results were observed for diastolic BP in CP. In multivariate analyses, NST had a predictive value for hypertension in postpubertal CP and controls (odds ratio 6.98, 95\% confidence interval 1.65, 29.5], P = .008). During a longitudinal follow-up, changes in NST correlated with changes in BMI SDS (P = .001) and WHtR (P = .01) but not with changes in BP and functional capacity. Conclusions: Because monitoring of magnetic resonance imaging and BC is essential for follow-up in CP, NST could serve as a novel and clinically relevant parameter for longitudinal assessment of BC and CVD risk in CP.}, language = {en} } @article{SchneiderDittrichBoecketal.2016, author = {Schneider, Eberhard and Dittrich, Marcus and B{\"o}ck, Julia and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and El Hajj, Nady and Haaf, Thomas}, title = {CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development}, series = {Gene}, volume = {592}, journal = {Gene}, number = {1}, doi = {10.1016/j.gene.2016.07.058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186936}, pages = {110-118}, year = {2016}, abstract = {Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.}, language = {en} } @article{FoersterBeisserGrohmeetal.2012, author = {F{\"o}rster, Frank and Beisser, Daniela and Grohme, Markus A. and Liang, Chunguang and Mali, Brahim and Siegl, Alexander Matthias and Engelmann, Julia C. and Shkumatov, Alexander V. and Schokraie, Elham and M{\"u}ller, Tobias and Schn{\"o}lzer, Martina and Schill, Ralph O. and Frohme, Marcus and Dandekar, Thomas}, title = {Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations}, series = {Bioinformatics and biology insights}, volume = {6}, journal = {Bioinformatics and biology insights}, doi = {10.4137/BBI.S9150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123089}, pages = {69-96}, year = {2012}, abstract = {Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade \(Milnesium\) \(tardigradum\) were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from \(Hypsibius\) \(dujardini\), revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for \(M.\) \(tardigradum\) are different from typical motifs known from higher animals. \(M.\) \(tardigradum\) and \(H.\) \(dujardini\) protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of \(M.\) \(tardigradum\). These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and \(M.\) \(tardigradum\) in particular so highly stress resistant.}, language = {en} } @article{HebestreitZeidlerSchippersetal.2022, author = {Hebestreit, Helge and Zeidler, Cornelia and Schippers, Christopher and de Zwaan, Martina and Deckert, J{\"u}rgen and Heuschmann, Peter and Krauth, Christian and Bullinger, Monika and Berger, Alexandra and Berneburg, Mark and Brandstetter, Lilly and Deibele, Anna and Dieris-Hirche, Jan and Graessner, Holm and G{\"u}ndel, Harald and Herpertz, Stephan and Heuft, Gereon and Lapstich, Anne-Marie and L{\"u}cke, Thomas and Maisch, Tim and Mundlos, Christine and Petermann-Meyer, Andrea and M{\"u}ller, Susanne and Ott, Stephan and Pfister, Lisa and Quitmann, Julia and Romanos, Marcel and Rutsch, Frank and Schaubert, Kristina and Schubert, Katharina and Schulz, J{\"o}rg B. and Schweiger, Susann and T{\"u}scher, Oliver and Ungeth{\"u}m, Kathrin and Wagner, Thomas O. F. and Haas, Kirsten}, title = {Dual guidance structure for evaluation of patients with unclear diagnosis in centers for rare diseases (ZSE-DUO): study protocol for a controlled multi-center cohort study}, series = {Orphanet Journal of Rare Diseases}, volume = {17}, journal = {Orphanet Journal of Rare Diseases}, number = {1}, doi = {10.1186/s13023-022-02176-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300440}, year = {2022}, abstract = {Background In individuals suffering from a rare disease the diagnostic process and the confirmation of a final diagnosis often extends over many years. Factors contributing to delayed diagnosis include health care professionals' limited knowledge of rare diseases and frequent (co-)occurrence of mental disorders that may complicate and delay the diagnostic process. The ZSE-DUO study aims to assess the benefits of a combination of a physician focusing on somatic aspects with a mental health expert working side by side as a tandem in the diagnostic process. Study design This multi-center, prospective controlled study has a two-phase cohort design. Methods Two cohorts of 682 patients each are sequentially recruited from 11 university-based German Centers for Rare Diseases (CRD): the standard care cohort (control, somatic expertise only) and the innovative care cohort (experimental, combined somatic and mental health expertise). Individuals aged 12 years and older presenting with symptoms and signs which are not explained by current diagnoses will be included. Data will be collected prior to the first visit to the CRD's outpatient clinic (T0), at the first visit (T1) and 12 months thereafter (T2). Outcomes Primary outcome is the percentage of patients with one or more confirmed diagnoses covering the symptomatic spectrum presented. Sample size is calculated to detect a 10 percent increase from 30\% in standard care to 40\% in the innovative dual expert cohort. Secondary outcomes are (a) time to diagnosis/diagnoses explaining the symptomatology; (b) proportion of patients successfully referred from CRD to standard care; (c) costs of diagnosis including incremental cost effectiveness ratios; (d) predictive value of screening instruments administered at T0 to identify patients with mental disorders; (e) patients' quality of life and evaluation of care; and f) physicians' satisfaction with the innovative care approach. Conclusions This is the first multi-center study to investigate the effects of a mental health specialist working in tandem with a somatic expert physician in CRDs. If this innovative approach proves successful, it will be made available on a larger scale nationally and promoted internationally. In the best case, ZSE-DUO can significantly shorten the time to diagnosis for a suspected rare disease.}, language = {en} }