@phdthesis{Albert2018, author = {Albert, Julian}, title = {Quantum Studies on Low-Dimensional Coupled Electron-Nuclear Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161512}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In the context of quantum mechanical calculations, the properties of non-adiabatic coupling in a small system, the Shin-Metiu model, is investigated. The transition from adiabatic to non-adiabatic dynamics is elucidated in modifying the electron-nuclear interaction. This allows the comparison of weakly correlated electron-nuclear motion with the case where the strong correlations determine the dynamics. The studies of the model are extended to include spectroscopical transitions being present in two-dimensional and degenerate four-wave mixing spectroscopy. Furthermore, the quantum and classical time-evolution of the coupled motion in the complete electron-nuclear phase space is compared for the two coupling cases. Additionally, the numerically exact electron flux within the weak coupling case is compared to the Born-Oppenheimer treatment. In the last part of the thesis, the model is extended to two dimensions. The system then possesses potential energy surfaces which exhibit a typical 'Mexican hat'-like structure and a conical intersection in the adiabatic representation. Thus, it is possible to map properties of the system onto a vibronic coupling (Jahn-Teller) hamiltonian. Exact wave-packet propagations as well as nuclear wave-packet dynamics in the adiabatic and diabatic representation are performed.}, subject = {Theoretische Chemie}, language = {en} }