@article{WieseDennstaedtHollmannetal.2021, author = {Wiese, Teresa and Dennst{\"a}dt, Fabio and Hollmann, Claudia and Stonawski, Saskia and Wurst, Catherina and Fink, Julian and Gorte, Erika and Mandasari, Putri and Domschke, Katharina and Hommers, Leif and Vanhove, Bernard and Schumacher, Fabian and Kleuser, Burkard and Seibel, J{\"u}rgen and Rohr, Jan and Buttmann, Mathias and Menke, Andreas and Schneider-Schaulies, J{\"u}rgen and Beyersdorf, Niklas}, title = {Inhibition of acid sphingomyelinase increases regulatory T cells in humans}, series = {Brain Communications}, volume = {3}, journal = {Brain Communications}, number = {2}, doi = {10.1093/braincomms/fcab020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259868}, year = {2021}, abstract = {Genetic deficiency for acid sphingomyelinase or its pharmacological inhibition has been shown to increase Foxp3\(^+\) regulatory T-cell frequencies among CD4\(^+\) T cells in mice. We now investigated whether pharmacological targeting of the acid sphingomyelinase, which catalyzes the cleavage of sphingomyelin to ceramide and phosphorylcholine, also allows to manipulate relative CD4\(^+\) Foxp3\(^+\) regulatory T-cell frequencies in humans. Pharmacological acid sphingomyelinase inhibition with antidepressants like sertraline, but not those without an inhibitory effect on acid sphingomyelinase activity like citalopram, increased the frequency of Foxp3\(^+\) regulatory T cell among human CD4\(^+\) T cells in vitro. In an observational prospective clinical study with patients suffering from major depression, we observed that acid sphingomyelinase-inhibiting antidepressants induced a stronger relative increase in the frequency of CD4\(^+\) Foxp3\(^+\) regulatory T cells in peripheral blood than acid sphingomyelinase-non- or weakly inhibiting antidepressants. This was particularly true for CD45RA\(^-\) CD25\(^{high}\) effector CD4\(^+\) Foxp3\(^+\) regulatory T cells. Mechanistically, our data indicate that the positive effect of acid sphingomyelinase inhibition on CD4\(^+\) Foxp3\(^+\) regulatory T cells required CD28 co-stimulation, suggesting that enhanced CD28 co-stimulation was the driver of the observed increase in the frequency of Foxp3+ regulatory T cells among human CD4\(^+\) T cells. In summary, the widely induced pharmacological inhibition of acid sphingomyelinase activity in patients leads to an increase in Foxp3+ regulatory T-cell frequencies among CD4\(^+\) T cells in humans both in vivo and in vitro.}, language = {en} } @article{SolgerKunzFinketal.2020, author = {Solger, Franziska and Kunz, Tobias C. and Fink, Julian and Paprotka, Kerstin and Pfister, Pauline and Hagen, Franziska and Schumacher, Fabian and Kleuser, Burkhard and Seibel, J{\"u}rgen and Rudel, Thomas}, title = {A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.00215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204111}, year = {2020}, abstract = {Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells.}, language = {en} } @article{PetersKaiserFinketal.2021, author = {Peters, Simon and Kaiser, Lena and Fink, Julian and Schumacher, Fabian and Perschin, Veronika and Schlegel, Jan and Sauer, Markus and Stigloher, Christian and Kleuser, Burkhard and Seibel, Juergen and Schubert-Unkmeir, Alexandra}, title = {Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-83813-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259147}, pages = {4300}, year = {2021}, abstract = {Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity.}, language = {en} } @article{EderHollmannMandasarietal.2022, author = {Eder, Sascha and Hollmann, Claudia and Mandasari, Putri and Wittmann, Pia and Schumacher, Fabian and Kleuser, Burkhard and Fink, Julian and Seibel, J{\"u}rgen and Schneider-Schaulies, J{\"u}rgen and Stigloher, Christian and Beyersdorf, Niklas and Dembski, Sofia}, title = {Synthesis and characterization of ceramide-containing liposomes as membrane models for different T cell subpopulations}, series = {Journal of Functional Biomaterials}, volume = {13}, journal = {Journal of Functional Biomaterials}, number = {3}, issn = {2079-4983}, doi = {10.3390/jfb13030111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286130}, year = {2022}, abstract = {A fine balance of regulatory (T\(_{reg}\)) and conventional CD4\(^+\) T cells (T\(_{conv}\)) is required to prevent harmful immune responses, while at the same time ensuring the development of protective immunity against pathogens. As for many cellular processes, sphingolipid metabolism also crucially modulates the T\(_{reg}\)/T\(_{conv}\) balance. However, our understanding of how sphingolipid metabolism is involved in T cell biology is still evolving and a better characterization of the tools at hand is required to advance the field. Therefore, we established a reductionist liposomal membrane model system to imitate the plasma membrane of mouse T\(_{reg}\) and T\(_{conv}\) with regards to their ceramide content. We found that the capacity of membranes to incorporate externally added azide-functionalized ceramide positively correlated with the ceramide content of the liposomes. Moreover, we studied the impact of the different liposomal preparations on primary mouse splenocytes in vitro. The addition of liposomes to resting, but not activated, splenocytes maintained viability with liposomes containing high amounts of C\(_{16}\)-ceramide being most efficient. Our data thus suggest that differences in ceramide post-incorporation into T\(_{reg}\) and T\(_{conv}\) reflect differences in the ceramide content of cellular membranes.}, language = {en} }