@article{HsiehLinsenmair2012, author = {Hsieh, Yu-Lung and Linsenmair, Karl Eduard}, title = {Seasonal dynamics of arboreal spider diversity in a temperate forest}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75158}, year = {2012}, abstract = {Measuring and estimating biodiversity patterns is a fundamental task of the scientist working to support conservation and informmanagement decisions.Most biodiversity studies in temperate regions were often carried out over a very short period of time (e.g., a single season) and it is often—at least tacitly—assumed that these short-termfindings are representative of long-termgeneral patterns.However, should the studied biodiversity pattern in fact contain significant temporal dynamics, perhaps leading to contradictory conclusions. Here, we studied the seasonal diversity dynamics of arboreal spider communities dwelling in 216 European beeches (Fagus sylvatica L.) to assess the spider community composition in the following seasons: two cold seasons (I:November 2005-January 2006; II: February-April) and two warm seasons (III: May-July; IV: August-October). We show that the usually measured diversity of the warmseason community (IV: 58 estimated species) alone did not deliver a reliable image of the overall diversity present in these trees, and therefore, we recommend it should not be used for sampling protocols aimed at providing a full picture of a forest's biodiversity in the temperate zones. In particular, when the additional samplings of other seasons (I, II, III) were included, the estimated species richness nearly doubled (108). Community I possessed the lowest diversity and evenness due to the harsh winter conditions: this community was comprised of one dominant species together with several species low in abundance. Similarity was lowest (38.6\%) between seasonal communities I and III, indicating a significant species turnover due to recolonization, so that community III had the highest diversity. Finally, using nonparametric estimators, we found that further sampling in late winter (February-April) is most needed to complete our inventory. Our study clearly demonstrates that seasonal dynamics of communities should be taken into account when studying biodiversity patterns of spiders, and probably forest arthropods in general.}, subject = {Biologie}, language = {en} } @article{FialaGrunskyMaschwitzetal.1994, author = {Fiala, Brigitte and Grunsky, Harald and Maschwitz, Ulrich and Linsenmair, Karl Eduard}, title = {Diversity of ant-plant interactions: Protective efficacy in Macaranga species with different degrees of ant-association.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32905}, year = {1994}, abstract = {The pioneer tree Macaranga in SE Asia has developed manyfold associations with ants. The genus comprises all stages of interaction with ants, from facultative relationships to obligate myrmecophytes. Only myrmecophytic Macaranga offer nesting space for ants and are associated with a specific ant partner. The nonmyrmecophytic species are visited by a variety of different ant species which are attracted by extrafloral nectaries (EFN) and food bodies. Transitional Macaranga species like M. hosei are colonized later in their development due to their stem structure. Before the colonization by their specific Crematogaster partner the young plants are visited by different ant species attracted by EFN. These nectaries are reduced and food body production starts as soon as colonization becomes possible. We demonstrated earlier that obligate ant partners can protect their Macaranga plants against herbivore damage and vine cover. In this study we focused on nonspecific interactions and studied M. tanarius and M. hosei, representing a non-myrmecophyte and a transitional species respectively. In ant exclusion experiments both M. tanarius and M. hosei suffered significantly higher mean leaf damage than controls, 37\% versus 6\% in M. hosei, 16\% versus 7\% in M. tanarius. M. tanarius offers both EFN and food bodies so that tests for different effects of these two food rewards could be conducted. Plants with food bodies removed but with EFN remaining had the lowest mean increase of herbivore damage of all experimental groups. Main herbivores on M. hosei were mites and caterpillars. Many M. tanarius plants were infested by a shootborer. Both Macaranga species were visited by various ant species. Crematogaster spp. being the most abundant. We found no evidence for any specific relationships. The results of this study strongly support the hypothesis that non-specific, facultative associations with ants can be advantageous for Macaranga plants. Food bodies appear to have lower attractive value for opportunistic ants than EFN and may require a specific dietary adaptation. This is also indicated by the fact that food body production in the transitional M. hosei does not start before stem structure allows a colonization by the obligate Crematogaster species. M. hosei thus benefits from facultative association with a variety of ants until it produces its first domatia and can be colonized by its obligate mutualist.}, language = {en} } @incollection{WarburgLinsenmairBercovitz1984, author = {Warburg, M. R. and Linsenmair, Karl Eduard and Bercovitz, K.}, title = {The effect of climate on the distribution and abundance of isopods}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-44473}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1984}, abstract = {Climate affects both the distribution and abundance of isopods. Humidity and moisture affect their activity and distribution. Survival of juveniles is largely dependent on moisture. The reproductive pattern is affected by temperature and light. Food affects growth and thus, indirectly, also reproduction, as larger females tend to produce larger broods and more frequent broods than smaller ones. Generally in isopods there is little evidence to suggest that food is a very important factor affecting their abundance. Both semelparity and iteroparity are found in isopods and both reproductive strategies are apparently successful. Mortality factors affect the oocytes, the marsupial stages, and most of all the newly released individuals . Apart from climatic factors, predation and, to a lesser extent, parasitism are the main causes of mortality. Longevity of isopods ranges from one to five years. Occasional population explosions ofisopods are known to take place, their cause being unknown.}, language = {en} } @article{Linsenmair1974, author = {Linsenmair, Karl Eduard}, title = {Some adaptations of the desert woodlouse Hemilepistus reaumuri (Isopoda, Oniscoidea) to desert environment}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-44483}, year = {1974}, abstract = {No abstract available}, language = {en} } @article{SteinCoulibalyBalimaetal.2020, author = {Stein, Katharina and Coulibaly, Drissa and Balima, Larba Hubert and Goetze, Dethardt and Linsenmair, Karl Eduard and Porembski, Stefan and Stenchly, Kathrin and Theodorou, Panagiotis}, title = {Plant-pollinator networks in savannas of Burkina Faso, West Africa}, series = {Diversity}, volume = {13}, journal = {Diversity}, number = {1}, issn = {1424-2818}, doi = {10.3390/d13010001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220157}, year = {2020}, abstract = {West African savannas are severely threatened with intensified land use and increasing degradation. Bees are important for terrestrial biodiversity as they provide native plant species with pollination services. However, little information is available regarding their mutualistic interactions with woody plant species. In the first network study from sub-Saharan West Africa, we investigated the effects of land-use intensity and climatic seasonality on plant-bee communities and their interaction networks. In total, we recorded 5686 interactions between 53 flowering woody plant species and 100 bee species. Bee-species richness and the number of interactions were higher in the low compared to medium and high land-use intensity sites. Bee- and plant-species richness and the number of interactions were higher in the dry compared to the rainy season. Plant-bee visitation networks were not strongly affected by land-use intensity; however, climatic seasonality had a strong effect on network architecture. Null-model corrected connectance and nestedness were higher in the dry compared to the rainy season. In addition, network specialization and null-model corrected modularity were lower in the dry compared to the rainy season. Our results suggest that in our study region, seasonal effects on mutualistic network architecture are more pronounced compared to land-use change effects. Nonetheless, the decrease in bee-species richness and the number of plant-bee interactions with an increase in land-use intensity highlights the importance of savanna conservation for maintaining bee diversity and the concomitant provision of ecosystem services.}, language = {en} } @article{MaschwitzFialaLinsenmair1994, author = {Maschwitz, Ulrich and Fiala, Brigitte and Linsenmair, Karl Eduard}, title = {Clerodendrum fistulosum (Verbenanceae), an unspecific myrmecophyte from Borneo with spontaneously opening domatia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31013}, year = {1994}, abstract = {Clerodendrumjistulosum Becc. is a true myrmecophyte as it offers nesting space for ants in hollow intemodes. In contrast to previous reports our investigations proved that these domatia open by themselves, thus providing cavities for a variety of different ant species. In Sarawak, Malaysia, we did not find an obligate relationship between C. jistulosum and a specific ant-partner. For comparison, studies on herbarium material of other Clerodendrum species were carried out a further species, C. deflexum from the Malay Peninsula and Sumatra presumably also is myrmecophytic.}, language = {en} } @article{DossoYeoKonateetal.2012, author = {Dosso, Kanvaly and Yeo, Kolo and Konate, Souleymane and Linsenmair, Karl Eduard}, title = {Importance of protected areas for biodiversity conservation in central Cote d'Ivoire: Comparison of termite assemblages between two neighboring areas under differing levels of disturbance}, series = {Journal of Insect Science}, volume = {12}, journal = {Journal of Insect Science}, number = {131}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133218}, year = {2012}, abstract = {To highlight human impact on biodiversity in the Lamto region, termites were studied with regard to their use as bio-indicators of habitat change in the tropics. Using a standardized method, termites were sampled in the three most common habitat types, i.e., in semi-deciduous forest, savanna woodland, and annually burned savanna, all inside Lamto Reserve and its surrounding rural domain. Termite species richness fell from 25 species in the Lamto forest to 13 species in the rural area, involving strong modification in the species composition (species turnover = 59 \%). In contrast, no significant change in diversity was found between the Lamto savannas and the rural ones. In addition, the relative abundance of termites showed a significantly greater decline in the rural domain, even in the species Ancistrotermes cavithorax (Sjostedt) (Isoptera: Termitidae), which is known to be ecologically especially versatile. Overall, the findings of this study suggest further investigation around Lamto Reserve on the impact of human activities on biodiversity, focusing on forest conversion to land uses (e.g. agricultural and silvicultural systems).}, language = {en} } @article{KobeltLinsenmair1986, author = {Kobelt, Frank and Linsenmair, Karl Eduard}, title = {Adaptations of the reed frog Hyperolius viridiflavus to its arid environment. I. The skin of Hyperolius viridiflavus nitidulus in wet and dry season conditions.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30551}, year = {1986}, abstract = {Hyperolius viridiflavus nitidulus inhabits parts of the seasonally very hot and dry West African savanna. During the long lasting dry season, the small frog is sitting unhidden on mostly dry plants and has to deal with high solar radiation load (SRL), evaporative water loss (EWL) and small energy reserves. It seems to be very badly equipped to survive such harsh climatic conditions (unfavorable surface to volume ratio, very limited capacity to st{\"o}re energy and water). Therefore, it must have developed extraordinary efficient mechanisms to solve the mentioned Problems. Some of these mechanisms are to be looked for within the skin of the animal (e.g. protection against fast desiccation, deleterious effects of UV radiation and over-heating). The morphology of the wet season skin is, in most aspects, that of a "normal" anuran skin. It differs in the Organization of the processes of the melanophores and in the arrangement of the chromatophores in the Stratum spongiosum, forming no "Dermal Chromatophore Unit". During the adaptation to dry season conditions the number of iridophores in dorsal and ventral skin is increased 4-6 times compared to wet season skin. This increase is accompanied by a very conspicuous change of the wet season color pattern. Now, at air temperatures below 35° C the color becomes brownish white or grey and changes to a brilliant white at air temperatures near and over 40° C. Thus, in dry season State the frog retains its ability for rapid color change. In wet season State the platelets of the iridophores are irregularly distributed. In dry season State many platelets become arranged almost parallel to the surface. These purine crystals probably act as quarter-wave-length interference reflectors, reducing SRL by reflecting a considerable amount of the radiated energy input. EWL is as low as that of much larger xeric reptilians. The impermeability of the skin seems to be the result of several mechanisms (ground substance, iridophores, lipids, mucus) supplementing each other. The light red skin at the pelvic region and inner sides of the limbs is specialized for rapid uptake of water allowing the frog to replenish the unavoidable EWL by using single drops of dew or rain, available for only very short periods.}, language = {en} } @article{Linsenmair1994, author = {Linsenmair, Karl Eduard}, title = {Biologische Vielfalt und {\"o}kologische Stabilit{\"a}t}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31157}, year = {1994}, abstract = {No abstract available}, language = {en} } @article{GrafeSchmuckLinsenmair1992, author = {Grafe, T. Ulmar and Schmuck, Richard and Linsenmair, Karl Eduard}, title = {Reproductive energetics of the African Reed Frogs, Hyperolius viridiflavus and Hyperolius marmoratus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31187}, year = {1992}, abstract = {No abstract available}, language = {en} }