@article{KlotzLohse1986, author = {Klotz, Karl-Norbert and Lohse, M. J.}, title = {The glycoprotein nature of A\(_1\) adenosine receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60231}, year = {1986}, abstract = {A\(_1\) adenosine receptors from different tissues and species we~e photoaffinity labelled and then the carbohydrate content was examined by both enzymatic and chemical treatment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the labelled membrane receptors shows that neuraminidase treatment alters the electrophoretic mobility of the receptor band indica ting the presence of terminal neurandnie acids. Neuraminidase digestion does not influence the binding characteristics of the receptor. The totally deglycosylated receptor protein obtained by chemical treatment has an apparent molecular weight Of 32,000.}, subject = {Toxikologie}, language = {en} } @article{LohseKlotzLindenbornFotinosetal.1987, author = {Lohse, M. J. and Klotz, Karl-Norbert and Lindenborn Fotinos, J. and Reddington, M. and Schwabe, U. and Olsson, R. A.}, title = {8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) - a selective high affinity antagonist radioligand for A\(_1\) adenosine receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60246}, year = {1987}, abstract = {The properties of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) as an antagonist ligand for A\(_1\) adenosirre receptors were examined and conipared with other radioligands for this receptor. DPCPX competitively antagonized both the inhibition of adenylate cyclase activity via A\(_1\) adenosirre receptors and the stimulationvia A\(_2\) adenosirre receptors. The K\(_i\)-values of this antagonism were 0.45 nM at the A\(_1\) receptor of rat fat cells, and 330 nM at the A\(_2\) receptor of human platelets, giving a more than 700-fold A\(_1\)-selectivity. A similar A\(_1\)-selectivity was determined in radioligand binding studies. Even at high concentrations, DPCPX did not significantly inhibit the soluble cAMPphosphodiesterase activity of human platelets. [\(^3\)H]DPCPX (105 Ci/mmol) bound in a saturable manner with high affinity to A\(_1\) receptors in membranes of bovine brain and heart, and rat brain and fat cells (K\(_D\) -values 50-190 pM). Its nonspecific binding was about 1\% of total at K\(_D\) , except in bovine myocardial membranes (about 10\%). Binding studies with bovine myocardial membranes allowed the analysis of both the high and low agonist affinity states of this receptor in a tissue with low receptor density. The binding properties of [\(^3\)H]DPCPX appear superior to those of other agonist and antagonist radioligands for the A\(_1\) receptor.}, subject = {Toxikologie}, language = {en} } @article{LohseMaurerKlotzetal.1989, author = {Lohse, M. J. and Maurer, K. and Klotz, Karl-Norbert and Schwabe, U.}, title = {Synergistic effects of calcium-mobilizing agents and adenosine on histamine release from rat peritoneal mast cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60346}, year = {1989}, abstract = {1 Adenosine and its metabolically stable analogue N.etbyl-carboxamidoadenosine (NECA) enhance histamine release from rat peritoneal mast cells when tbese are stimulated by calciummobilizing agents. NECA and adenosine shift the concentration-response curve of tbe calcium ionophore A23187 to lower concentrations. 2 The potencies of NECA or adenosinein enhancing A23187-induced histamine release are dependent on the Ievel of stimulated release in tbe absence of adenosine analogues. At high Ievels of release their potencies are up to 20 times higher than at low Ievels. Consequently, averaged concentration-response curves of adenosine and NECA for enhancing bistamine release are shallow. 3 The adenosine transport blocker S-(p-nitrobenzyl)-6-thioinosine (NBTI) has no effect by itself at low Ievels of stimulated histamine release, but abolishes the enhancing effect of adenosine. At high Ievels of release, however, NBTI alone enhances the release of histamine. 4 lt is concluded that adenosine and calcium reciprocally enhance the sensitivity of the secretory processes to the effects of the other agent. The Ievels of intracellular adenosine obtained by trapping adenosine inside stimulated mast cells are sufficient to enhance histamine release substantially, suggesting that this effect may play a physiological and pathophysiological role.}, subject = {Toxikologie}, language = {en} } @article{LohseKlotzJakobsetal.1985, author = {Lohse, M. J. and Klotz, Karl-Norbert and Jakobs, K. H. and Schwabe, U.}, title = {Barbiturates are selective antagonists at A\(_1\) adenosine receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60187}, year = {1985}, abstract = {Barbiturates in pharmacologically relevant . concentrations inhibit binding of (R)-\(N^6\)-phenylisopropyl[\(^3\)H]adenosine ([\(^3\)H]PIA) to solubilized A\(_1\) adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. K\(_i\) values are similar to those obtained for membrane-bound receptors and are 31 \(\mu\)M for ( ± )-5-(1 ,3-dimethyl)-5-ethylbarbituric acid [( ± )DMBB] and 89 \(\mu\)M for ( ± )-pentobarbital. Kinetic experiments demoostrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-\(N^6\)-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The Stimulation of adenylate cyclase via A\(_2\) adenosine receptors in membranes from NIE 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. lt is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A\(_1\) adenosine receptor antagonism may convey excitatory properties to barbiturates. Key Words: Adenosine receptors-Barbiturates - Adenylate cyclase-Receptor solubilization-[3H]PIA binding-N1E 115 cells. Lohse M. J. et al. Barbiturates are selective antagonists at A1 adenosine receptors.}, subject = {Toxikologie}, language = {en} } @article{KlotzCristalliGrifantinietal.1985, author = {Klotz, Karl-Norbert and Cristalli, G. and Grifantini, M. and Vittori, S. and Lohse, M. J.}, title = {Photoaffinity labeling of A\(_1\) adenosine receptors}, series = {The journal of biological chemistry}, volume = {27}, journal = {The journal of biological chemistry}, number = {260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60198}, year = {1985}, abstract = {The ligand-binding subunit of the A\(_1\)-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R- \(N^6\)-phenylisopropyladenosine, R-2-azido-\(N^6\)-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific Iigand for A\(_1\)-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R·AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A\(_1\)-subtype. It competes for [\(^3\)H].\(N^6\)- phenylisopropyladenosine binding to Arreceptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of [\(^3\)H)\(N^6\)-phenylisopropyladenosine binding afterextensive washing; the K; value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity Iabel of high specific radioactivity (\(^{125}\)I-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for \(^{125}\)I-AHPIA binding to rat brain membranes with an order of potency characteristic for A\(_1\)-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40\% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of M\(_r\) = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A\(_1\)-subtype. The results indicate that \(^{125}\)I-AHPIA identifies the ligand-binding subunit of the A\(_1\)-adenosine receptor, which is a peptide with M\(_r\) = 35,000.}, subject = {Toxikologie}, language = {en} } @article{GrossRuzickaRestorffetal.1990, author = {Gross, E. and Ruzicka, T. and Restorff, B. von and Stolz, W. and Klotz, Karl-Norbert}, title = {High-affinity binding and lack of growth-promoting activity of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) in a human epidermal cell line}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60358}, year = {1990}, abstract = {No abstract available}, subject = {Toxikologie}, language = {en} } @article{KlotzKeilZimmeretal.1990, author = {Klotz, Karl-Norbert and Keil, R. and Zimmer, F. J. and Schwabe, U.}, title = {Guanine nucleotide effects on 8-cyclopentyl-1,3-[\(^3\)H]dipropylxanthine binding to membrane-bound and solubilized A\(_1\) adenosine receptors of rat brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60369}, year = {1990}, abstract = {The effects of guanine nucleotides on binding of 8-cyclopentyl-1,3-[\(^3\)H]dipropylxanthine [\(^3\)H]DPCPX), a highly selective A\(_1\) adenosine receptor antagonist, have been investigated in rat brain membranes and solubilized A\(_1\) receptors. GTP, which induces uncoupling of receptors from guanine nucleotide binding proteins, increased binding of [\(^3\)H]DPCPX in a concentration-dependent manner. The rank order of potency for different guanine nucleotides for increasing [\(^3\)H]DPCPX bindingwas the same as for guanine nuc1eotide-induced inhibition of agonist binding. Therefore, a role for a guanine nucleotide binding protein, e.g., G\(_i\), in the regulation of antagonist binding is suggested. This was confirmed by inactivation ofGi by N-ethylmaleimide (NEM) treatment of membranes, which resulted in an increase in [\(^3\)H]DPCPX binding similar to that seen with addition of GTP. Kinetic and equilibrium binding studies showed that the GTP- or NEM-induced increase in antagonist binding was not caused by an affinity change of A\(-1\) receptors for [\(^3\)H]DPCPX but by an increased Bmu value. Guanine nucleotides had similar effects on membrane-bound and solubilized receptors, with the effects in the solubilized system being more pronounced. In the absence of GTP, when rnost receptors are in a high-affinity state for agonists, only a few receptors are labeled by [\(^3\)H]DPCPX. It is suggested that [\(^3\)H]DPCPX binding is inhibited when receptors are coupled to G\(_i\). Therefore, uncoupling of A\(_1\) receptors from G\(_i\) by guanine nucleotides or by inactivation of G\(_i\) with NEM results in an increased antagonist binding. Key Words: Adenosine receptors-8 -Cyclopentyl-1,3-eH]dipropylxanthine-Antagenist binding-Guanine nucleotide effects. Klotz K.-N. et al. Guanine nucleotide etfects on 8-cyclopentyl-1 ,3-eH]dipropylxanthine binding to membrane-bound and solubilized A1 adenosine receptors of rat brain. J. Neurochem. 54, 1988-1994 (1990).}, subject = {Toxikologie}, language = {en} } @article{GimplGerstbergerMaussetal.1990, author = {Gimpl, G. and Gerstberger, R. and Mauss, U. and Klotz, Karl-Norbert and Lang, R. E.}, title = {Solubilization and characterization of active neuropeptide-Y receptors from rabbit kidney}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60375}, year = {1990}, abstract = {Active neuropeptide Y receptors were solubilized from rabbit kidney membranes using the zwitterionic detergent 3-[ (3-cholamidopropy l)dimethylammonio ]- 1-propanesulfonic acid (CHAPS). In membrane fragmentsandsoluble extracts neuropeptide Y bindingwas time dependent, saturable, reversible, and of high affinity. Scatchard analysis of equilibrium binding data indicated a single class of binding sites with respective Kn and Bmax values of 0.09 nM and 530 fmol/mg of protein for the membrane-bound receptors and 0.10 nM and 1585 fmol/mg of protein for the soluble receptors. Neuropeptide Y bindingwas specifically inhibited by the nonhydrolyzable GTP analog guanosine 5' -0- (3-thiotripbosphate) in a concentration-dependent manner, with IC\(_{50}\) values of 28 and 0.14 \(\mu\)M for membrane- bound and soluble receptors, respectively, suggesting that neuropeptide Y receptors are functionally coupled to GTP-binding regulatory proteins. CrossHoking studies were performed with the heterobifunctional N-hydroxysuccinimidyl-4-azidobenzoate and the monofunctional neuropeptide Y derivative, azidobenzoyl and led to the identification of a 100 kDa peptide that should represent the covalently labeled neuropeptide Y receptor.}, subject = {Toxikologie}, language = {en} } @article{KlotzVogtTawfikSchlieper1991, author = {Klotz, Karl-Norbert and Vogt, H. and Tawfik-Schlieper, H.}, title = {Comparison of A\(_1\) adenosine receptors in brain from different species by radioligand binding and photoaffinity labelling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60388}, year = {1991}, abstract = {Radioligand binding to A\(_1\) adenosine receptors at brain membranes from seven species was investigated. The antagonist 8-cyclopentyl-1 ,3-[\(^3\)H]dipropylxanthine ([\(^3\)H]DPCPX) bound with affinities between 0.17 nM in sheep brain and 2.1 nM in guinea pig brain. Competition of several antagonists for [\(^3\)H]DPCPX binding showed that the most potent compounds were DPCPX with K\(_i\) values of 0.05 nM in bovine brain and 1.1 nM in guinea pig brain and xanthine amine congener (XAC) with K\(_i\) values of 0.03 nM in bovine brain and 5.5 nM in guinea pig brain. The differences in affinity of the agonist radio Iigand 2-chloro-N\(^6\) -[\(^3\)H]cyclopen tyladenosine ([\(^3\)H]CCP A) were less pronounced, rauging from a K\(_D\) value of 0.12 nM (hamster brain) to 0.42 nM (guinea pig brain). Agonist competition for [\(^3\)H]DPCPX binding of photoaffinity labelling, however, exhibited marked species differences. N-Ethylcarboxamidoadenosine (NECA) and S-N\(^6\)-phenylisopropyladenosine (S-PIA) showed 20 to 25-fold different K\(_D\) values in different species. NECA had a particularly high affinity in guinea pig brain and was only two-fold less potent than R-PIA. Thus, the difference from the "classical" A\(_1\) receptor profile (R-PIA > -NECA > S-PIA) is not sufficient to speculate that A\(_1\) receptor subtypes may exist that are coupled to different effector systems. Our data show that these difference can easily be explained by species differences.}, subject = {Toxikologie}, language = {en} } @article{vanCalkerSteberKlotzetal.1991, author = {van Calker, D. and Steber, R. and Klotz, Karl-Norbert and Greil, W.}, title = {Carbamazepine distinguishes between adenosine receptors that mediate different second messenger responses}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60392}, year = {1991}, abstract = {The mechanism of the therapeutic and prophylactic effects of carbamazepine (CBZ) in affective psychoses is unknown but may in part be related to the potent competitive interaction of CBZ with adenosine-binding sites in the brain. The antioonvulsant and sedative properties of CBZ are reminiscent of the effects evoked by adenosine-agonists and contrast sharply with the opposite aclions of adenosine-antagonists like caffeine. However. indirect evidence suggests an antagonist- rather than an agonist-like activity of CBZ at adenosi11e-receptors. We have used various model systems, in which adenosine receptor subtypes mediate different second messenger-responses, to investigate this apparent paradox. CBZ was found to antagonize the A\(_1\) receptor-mediated inhibition of cydic AMP accumulation in cultured astroblasts and in GH3-cells. Furthermore, CBZ also inhibits the adenosine-induced increase in the level of cyclic AMP in cultured astroblasts, which is mediated by low-affinity A\(_{2b}\)-receptors. ln contrast, CBZ does not block the inhibition elicited by adenosine-agonists of the agonist-induced increased formation of inositolphosphates in human neutrophils, which is mediated by high-affinity A\(_{2a}\)-receptors. The specific antagonism by CBZ of A\(_1\)- but not of high-affinity A\(_{2a}\)-receptors was further supported by binding experiments using rat brain membranes. These results suggest tbat the paradox of CBZ's antagonistic effects at adenosine-receptors might be at least partially reconciled by a selective antagonistic action of CBZ at A\(_1\)recertors but not at high-affinity A\(_{2a}\)-receptors.}, subject = {Toxikologie}, language = {en} }