@article{GeigerKoenigOberwinkleretal.2022, author = {Geiger, Nina and K{\"o}nig, Eva-Maria and Oberwinkler, Heike and Roll, Valeria and Diesendorf, Viktoria and F{\"a}hr, Sofie and Obernolte, Helena and Sewald, Katherina and Wronski, Sabine and Steinke, Maria and Bodem, Jochen}, title = {Acetylsalicylic acid and salicylic acid inhibit SARS-CoV-2 replication in precision-cut lung slices}, series = {Vaccines}, volume = {10}, journal = {Vaccines}, number = {10}, issn = {2076-393X}, doi = {10.3390/vaccines10101619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289885}, year = {2022}, abstract = {Aspirin, with its active compound acetylsalicylic acid (ASA), shows antiviral activity against rhino- and influenza viruses at high concentrations. We sought to investigate whether ASA and its metabolite salicylic acid (SA) inhibit SARS-CoV-2 since it might use similar pathways to influenza viruses. The compound-treated cells were infected with SARS-CoV-2. Viral replication was analysed by RTqPCR. The compounds suppressed SARS-CoV-2 replication in cell culture cells and a patient-near replication system using human precision-cut lung slices by two orders of magnitude. While the compounds did not interfere with viral entry, it led to lower viral RNA expression after 24 h, indicating that post-entry pathways were inhibited by the compounds.}, language = {en} } @article{ZimniakKirschnerHilpertetal.2021, author = {Zimniak, Melissa and Kirschner, Luisa and Hilpert, Helen and Geiger, Nina and Danov, Olga and Oberwinkler, Heike and Steinke, Maria and Sewald, Katherina and Seibel, J{\"u}rgen and Bodem, Jochen}, title = {The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-85049-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259820}, pages = {5890}, year = {2021}, abstract = {To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8 mu g/ml significantly in these screenings, and the EC50 was determined with 387 ng/ml. Furthermore, Fluoxetine reduced viral infectivity in precision-cut human lung slices showing its activity in relevant human tissue targeted in severe infections. Fluoxetine treatment resulted in a decrease in viral protein expression. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus, indicating that the R-form might specifically be used for SARS-CoV-2 treatment. Fluoxetine inhibited neither Rabies virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex virus type 1 gene expression, indicating that it acts virus-specific. Moreover, since it is known that Fluoxetine inhibits cytokine release, we see the role of Fluoxetine in the treatment of SARS-CoV-2 infected patients of risk groups.}, language = {en} } @article{GeigerDiesendorfRolletal.2023, author = {Geiger, Nina and Diesendorf, Viktoria and Roll, Valeria and K{\"o}nig, Eva-Maria and Obernolte, Helena and Sewald, Katherina and Breidenbach, Julian and Pillaiyar, Thanigaimalai and G{\"u}tschow, Michael and M{\"u}ller, Christa E. and Bodem, Jochen}, title = {Cell type-specific anti-viral effects of novel SARS-CoV-2 main protease inhibitors}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms24043972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304034}, year = {2023}, abstract = {Recently, we have described novel pyridyl indole esters and peptidomimetics as potent inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) main protease. Here, we analysed the impact of these compounds on viral replication. It has been shown that some antivirals against SARS-CoV-2 act in a cell line-specific way. Thus, the compounds were tested in Vero, Huh-7, and Calu-3 cells. We showed that the protease inhibitors at 30 µM suppress viral replication by up to 5 orders of magnitude in Huh-7 cells, while in Calu-3 cells, suppression by 2 orders of magnitude was achieved. Three pyridin-3-yl indole-carboxylates inhibited viral replication in all cell lines, indicating that they might repress viral replication in human tissue as well. Thus, we investigated three compounds in human precision-cut lung slices and observed donor-dependent antiviral activity in this patient-near system. Our results provide evidence that even direct-acting antivirals may act in a cell line-specific manner.}, language = {en} }