@article{WunschPfisterHenningetal.2016, author = {Wunsch, Kathrin and Pfister, Roland and Henning, Anne and Aschersleben, Gisa and Weigelt, Matthias}, title = {No Interrelation of Motor Planning and Executive Functions across Young Ages}, series = {Frontiers in Psychology}, volume = {7}, journal = {Frontiers in Psychology}, number = {1031}, doi = {10.3389/fpsyg.2016.01031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165281}, year = {2016}, abstract = {The present study examined the developmental trajectories of motor planning and executive functioning in children. To this end, we tested 217 participants with three motor tasks, measuring anticipatory planning abilities (i.e., the bar-transport-task, the sword-rotation-task and the grasp-height-task), and three cognitive tasks, measuring executive functions (i.e., the Tower-of-Hanoi-task, the Mosaic-task, and the D2-attention-endurance-task). Children were aged between 3 and 10 years and were separated into age groups by 1-year bins, resulting in a total of eight groups of children and an additional group of adults. Results suggested (1) a positive developmental trajectory for each of the sub-tests, with better task performance as children get older; (2) that the performance in the separate tasks was not correlated across participants in the different age groups; and (3) that there was no relationship between performance in the motor tasks and in the cognitive tasks used in the present study when controlling for age. These results suggest that both, motor planning and executive functions are rather heterogeneous domains of cognitive functioning with fewer interdependencies than often suggested.}, language = {en} } @article{BailNotzRovitusoetal.2017, author = {Bail, Kathrin and Notz, Quirin and Rovituso, Damiano M. and Schampel, Andrea and Wunsch, Marie and Koeniger, Tobias and Schropp, Verena and Bharti, Richa and Scholz, Claus-Juergen and Foerstner, Konrad U. and Kleinschnitz, Christoph and Kuerten, Stefanie}, title = {Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis.}, series = {Journal of Neuroinflammation}, volume = {14}, journal = {Journal of Neuroinflammation}, number = {148}, doi = {10.1186/s12974-017-0924-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157869}, year = {2017}, abstract = {Background: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). Methods: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P\(_{1}\) receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. Results: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220\(^{+}\) B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. Conclusions: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE.}, language = {en} }