@article{DuettingGaitsIacovoniStegneretal.2017, author = {D{\"u}tting, Sebastian and Gaits-Iacovoni, Frederique and Stegner, David and Popp, Michael and Antkowiak, Adrien and van Eeuwijk, Judith M.M. and Nurden, Paquita and Stritt, Simon and Heib, Tobias and Aurbach, Katja and Angay, Oguzhan and Cherpokova, Deya and Heinz, Niels and Baig, Ayesha A. and Gorelashvili, Maximilian G. and Gerner, Frank and Heinze, Katrin G. and Ware, Jerry and Krohne, Georg and Ruggeri, Zaverio M. and Nurden, Alan T. and Schulze, Harald and Modlich, Ute and Pleines, Irina and Brakebusch, Cord and Nieswandt, Bernhard}, title = {A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15838}, doi = {10.1038/ncomms15838}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170797}, year = {2017}, abstract = {Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.}, language = {en} } @article{AngayFriedrichPinneckeretal.2018, author = {Angay, Oguzhan and Friedrich, Mike and Pinnecker, J{\"u}rgen and Hintzsche, Henning and Stopper, Helga and Hempel, Klaus and Heinze, Katrin G.}, title = {Image-based modeling and scoring of Howell-Jolly Bodies in human erythrocytes}, series = {Cytometry Part A}, volume = {93}, journal = {Cytometry Part A}, doi = {10.1002/cyto.a.23123}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221140}, pages = {305-313}, year = {2018}, abstract = {The spleen selectively removes cells with intracellular inclusions, for example, detached nuclear fragments in circulating erythrocytes, called Howell-Jolly Bodies (HJBs). With absent or deficient splenic function HJBs appear in the peripheral blood and can be used as a simple and non-invasive risk-indicator for fulminant potentially life-threatening infection after spleenectomy. However, it is still under debate whether counting of the rare HJBs is a reliable measure of splenic function. Investigating HJBs in premature erythrocytes from patients during radioiodine therapy gives about 10 thousand times higher HJB counts than in blood smears. However, we show that there is still the risk of false-positive results by unspecific nuclear remnants in the prepared samples that do not originate from HJBs, but from cell debris residing above or below the cell. Therefore, we present a method to improve accuracy of image-based tests that can be performed even in non-specialized medical institutions. We show how to selectively label HJB-like clusters in human blood samples and how to only count those that are undoubtedly inside the cell. We found a "critical distance" dcrit referring to a relative HJB-Cell distance that true HJBs do not exceed. To rule out false-positive counts we present a simple inside-outside-rule based on dcrit—a robust threshold that can be easily assessed by combining conventional 2D imaging and straight-forward image analysis. Besides data based on fluorescence imaging, simulations of randomly distributed HJB-like objects on realistically modelled cell objects demonstrate the risk and impact of biased counting in conventional analysis. © 2017 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.}, language = {en} }