@article{GalluzziBravoSanPedroVitaleetal.2015, author = {Galluzzi, L. and Bravo-San Pedro, J. M. and Vitale, I. and Aaronson, S. A. and Abrams, J. M. and Adam, D. and Alnemri, E. S. and Altucci, L. and Andrews, D. and Annicchiarico-Petruzelli, M. and Baehrecke, E. H. and Bazan, N. G. and Bertrand, M. J. and Bianchi, K. and Blagosklonny, M. V. and Blomgren, K. and Borner, C. and Bredesen, D. E. and Brenner, C. and Campanella, M. and Candi, E. and Cecconi, F. and Chan, F. K. and Chandel, N. S. and Cheng, E. H. and Chipuk, J. E. and Cidlowski, J. A. and Ciechanover, A. and Dawson, T. M. and Dawson, V. L. and De Laurenzi, V. and De Maria, R. and Debatin, K. M. and Di Daniele, N. and Dixit, V. M. and Dynlacht, B. D. and El-Deiry, W. S. and Fimia, G. M. and Flavell, R. A. and Fulda, S. and Garrido, C. and Gougeon, M. L. and Green, D. R. and Gronemeyer, H. and Hajnoczky, G. and Hardwick, J. M. and Hengartner, M. O. and Ichijo, H. and Joseph, B. and Jost, P. J. and Kaufmann, T. and Kepp, O. and Klionsky, D. J. and Knight, R. A. and Kumar, S. and Lemasters, J. J. and Levine, B. and Linkermann, A. and Lipton, S. A. and Lockshin, R. A. and L{\´o}pez-Ot{\´i}n, C. and Lugli, E. and Madeo, F. and Malorni, W. and Marine, J. C. and Martin, S. J. and Martinou, J. C. and Medema, J. P. and Meier, P. and Melino, S. and Mizushima, N. and Moll, U. and Mu{\~n}oz-Pinedo, C. and Nu{\~n}ez, G. and Oberst, A. and Panaretakis, T. and Penninger, J. M. and Peter, M. E. and Piacentini, M. and Pinton, P. and Prehn, J. H. and Puthalakath, H. and Rabinovich, G. A. and Ravichandran, K. S. and Rizzuto, R. and Rodrigues, C. M. and Rubinsztein, D. C. and Rudel, T. and Shi, Y. and Simon, H. U. and Stockwell, B. R. and Szabadkai, G. and Tait, S. W. and Tang, H. L. and Tavernarakis, N. and Tsujimoto, Y. and Vanden Berghe, T. and Vandenabeele, P. and Villunger, A. and Wagner, E. F. and Walczak, H. and White, E. and Wood, W. G. and Yuan, J. and Zakeri, Z. and Zhivotovsky, B. and Melino, G. and Kroemer, G.}, title = {Essential versus accessory aspects of cell death: recommendations of the NCCD 2015}, series = {Cell Death and Differentiation}, volume = {22}, journal = {Cell Death and Differentiation}, doi = {10.1038/cdd.2014.137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121207}, pages = {58-73}, year = {2015}, abstract = {Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as 'accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. 'Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.}, language = {en} } @article{ReiterGenslerRitteretal.2012, author = {Reiter, Theresa and Gensler, Daniel and Ritter, Oliver and Weiss, Ingo and Geistert, Wolfgang and Kaufmann, Ralf and Hoffmeister, Sabine and Friedrich, Michael T. and Wintzheimer, Stefan and D{\"u}ring, Markus and Nordbeck, Peter and Jakob, Peter M. and Ladd, Mark E. and Quick, Harald H. and Bauer, Wolfgang R.}, title = {Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {14}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {12}, doi = {10.1186/1532-429X-14-12}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134927}, year = {2012}, abstract = {Background: One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. Methods: A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. Results: A maximum temperature rise of 22.4 degrees C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2 degrees C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8 degrees C. Conclusion: Up to a maximum of 22.4 degrees C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner.}, language = {en} } @article{StoelzelMohrKrameretal.2016, author = {St{\"o}lzel, F. and Mohr, B. and Kramer, M. and Oelschl{\"a}gel, U. and Bochtler, T. and Berdel, W. E. and Kaufmann, M. and Baldus, C. D. and Sch{\"a}fer-Eckart, K. and Stuhlmann, R. and Einsele, H. and Krause, S. W. and Serve, H. and H{\"a}nel, M. and Herbst, R. and Neubauer, A. and Sohlbach, K. and Mayer, J. and Middeke, J. M. and Platzbecker, U. and Schaich, M. and Kr{\"a}mer, A. and R{\"o}llig, C. and Schetelig, J. and Bornh{\"a}user, M. and Ehninger, G.}, title = {Karyotype complexity and prognosis in acute myeloid leukemia}, series = {Blood Cancer Journal}, volume = {6}, journal = {Blood Cancer Journal}, doi = {10.1038/bcj.2015.114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164530}, pages = {e386}, year = {2016}, abstract = {A complex aberrant karyotype consisting of multiple unrelated cytogenetic abnormalities is associated with poor prognosis in patients with acute myeloid leukemia (AML). The European Leukemia Net classification and the UK Medical Research Council recommendation provide prognostic categories that differ in the definition of unbalanced aberrations as well as the number of single aberrations. The aim of this study on 3526 AML patients was to redefine and validate a cutoff for karyotype complexity in AML with regard to adverse prognosis. Our study demonstrated that (1) patients with a pure hyperdiploid karyotype have an adverse risk irrespective of the number of chromosomal gains, (2) patients with translocation t(9;11)(p21∼22;q23) have an intermediate risk independent of the number of additional aberrations, (3) patients with 4 abnormalities have an adverse risk per se and (4) patients with three aberrations in the absence of abnormalities of strong influence (hyperdiploid karyotype, t(9;11)(p21∼22;q23), CBF-AML, unique adverse-risk aberrations) have borderline intermediate/adverse risk with a reduced overall survival compared with patients with a normal karyotype.}, language = {en} }