@phdthesis{Kehrberger2021, author = {Kehrberger, Sandra}, title = {Effects of climate warming on the timing of flowering and emergence in a tritrophic relationship: plants - bees - parasitoids}, doi = {10.25972/OPUS-21393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213932}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The right timing of phenological events is crucial for species fitness. Species should be highly synchronized with mutualists, but desynchronized with antagonists. With climate warming phenological events advance in many species. However, often species do not respond uniformly to warming temperatures. Species-specific responses to climate warming can lead to asynchrony or even temporal mismatch of interacting species. A temporal mismatch between mutualists, which benefit from each other, can have negative consequences for both interaction partners. For host-parasitoid interactions temporal asynchrony can benefit the host species, if it can temporally escape its parasitoid, with negative consequences for the parasitoid species, but benefit the parasitoid species if it increases synchrony with its host, which can negatively affect the host species. Knowledge about the drivers of phenology and the species-specific responses to these drivers are important to predict future effects of climate change on trophic interactions. In this dissertation I investigated how different drivers act on early flowering phenology and how climate warming affects the tritrophic relationship of two spring bees (Osmia cornuta \& Osmia bicornis), an early spring plant (Pulsatilla vulgaris), which is one of the major food plants of the spring bees, and three main parasitoids of the spring bees (Cacoxenus indagator, Anthrax anthrax, Monodontomerus). In Chapter II I present a study in which I investigated how different drivers and their change over the season affect the reproductive success of an early spring plant. For that I recorded on eight calcareous grasslands around W{\"u}rzburg, Germany the intra-seasonal changes in pollinator availability, number of co-flowering plants and weather conditions and studied how they affect flower visitation rates, floral longevity and seed set of the early spring plant P. vulgaris. I show that bee abundances and the number of hours, which allowed pollinator foraging, were low at the beginning of the season, but increased over time. However, flower visitation rates and estimated total number of bee visits were higher on early flowers of P. vulgaris than later flowers. Flower visitation rates were also positively related to seed set. Over time and with increasing competition for pollinators by increasing numbers of co-flowering plants flower visitation rates decreased. My data shows that a major driver for early flowering dates seems to be low interspecific competition for pollinators, but not low pollinator abundances and unfavourable weather conditions. Chapter III presents a study in which I investigated the effects of temperature on solitary bee emergence and on the flowering of their food plant and of co-flowering plants in the field. Therefore I placed bee cocoons of two spring bees (O. cornuta \& O. bicornis) on eleven calcareous grasslands which differed in mean site temperature. On seven of these grasslands the early spring plant P. vulgaris occurred. I show that warmer temperatures advanced mean emergence in O. cornuta males. However, O. bicornis males and females of both species did not shift their emergence. Compared to the bees P. vulgaris advanced its flowering phenology more strongly with warmer temperatures. Co-flowering plants did not shift flowering onset. I suggest that with climate warming the first flowers of P. vulgaris face an increased risk of pollinator limitation whereas for bees a shift in floral resources may occur. In Chapter IV I present a study in which I investigated the effects of climate warming on host-parasitoid relationships. I studied how temperature and photoperiod affect emergence phenology in two spring bees (O. cornuta \& O. bicornis) and three of their main parasitoids (C. indagator, A. anthrax, Monodontomerus). In a climate chamber experiment with a crossed design I exposed cocoons within nest cavities and cocoons outside of nest cavities to two different temperature regimes (long-term mean of W{\"u}rzburg, Germany and long-term mean of W{\"u}rzburg + 4 °C) and three photoperiods (W{\"u}rzburg vs. Sn{\aa}sa, Norway vs. constant darkness) and recorded the time of bee and parasitoid emergence. I show that warmer temperatures advanced emergence in all studied species, but bees advanced less strongly than parasitoids. Consequently, the time period between female bee emergence and parasitoid emergence decreased in the warm temperature treatment compared to the cold one. Photoperiod influenced the time of emergence only in cocoons outside of nest cavities (except O. bicornis male emergence). The data also shows that the effect of photoperiod compared to the effect of temperature on emergence phenology was much weaker. I suggest that with climate warming the synchrony of emergence phenologies of bees and their parasitoids will amplify. Therefore, parasitism rates in solitary bees might increase which can negatively affect reproductive success and population size. In this dissertation I show that for early flowering spring plants low interspecific competition for pollinators with co-flowering plants is a major driver of flowering phenology, whereas other drivers, like low pollinator abundances and unfavourable weather conditions are only of minor importance. With climate warming the strength of different drivers, which act on the timing of phenological events, can change, like temperature. I show that warmer temperatures advance early spring plant flowering more strongly than bee emergence and flowering phenology of later co-flowering plants. Furthermore, I show that warmer temperatures advance parasitoid emergence more strongly than bee emergence. Whereas temperature changes can lead to non-uniform temporal shifts, I demonstrate that geographic range shifts and with that altered photoperiods will not change emergence phenology in bees and their parasitoids. In the tritrophic system I investigated in this dissertation climate warming may negatively affect the reproductive success of the early spring plant and the spring bees but not of the parasitoids, which may even benefit from warming temperatures.}, subject = {Biene }, language = {en} } @article{KehrbergerHolzschuh2019, author = {Kehrberger, Sandra and Holzschuh, Andrea}, title = {How does timing of flowering affect competition for pollinators, flower visitation and seed set in an early spring grassland plant?}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-51916-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202549}, pages = {15593}, year = {2019}, abstract = {Knowledge on how the timing of flowering is related to plant fitness and species interactions is crucial to understand consequences of phenological shifts as they occur under climate change. Early flowering plants may face advantages of low competition for pollinators and disadvantages of low pollinator abundances and unfavourable weather conditions. However, it is unknown how this trade-off changes over the season and how the timing affects reproductive success. On eight grasslands we recorded intra-seasonal changes in pollinators, co-flowering plants, weather conditions, flower visitation rates, floral longevity and seed set of Pulsatilla vulgaris. Although bee abundances and the number of pollinator-suitable hours were low at the beginning of the season, early flowers of P. vulgaris received higher flower visitation rates and estimated total number of bee visits than later flowers, which was positively related to seed set. Flower visitation rates decreased over time and with increasing number of co-flowering plants, which competed with P. vulgaris for pollinators. Low interspecific competition for pollinators seems to be a major driver for early flowering dates. Thus, non-synchronous temporal shifts of co-flowering plants as they may occur under climate warming can be expected to strongly affect plant-pollinator interactions and the fitness of the involved plants.}, language = {en} } @article{KehrbergerHolzschuh2019, author = {Kehrberger, Sandra and Holzschuh, Andrea}, title = {Warmer temperatures advance flowering in a spring plant more strongly than emergence of two solitary spring bee species}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0218824}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201165}, pages = {e0218824}, year = {2019}, abstract = {Climate warming has the potential to disrupt plant-pollinator interactions or to increase competition of co-flowering plants for pollinators, due to species-specific phenological responses to temperature. However, studies focusing on the effect of temperature on solitary bee emergence and the flowering onset of their food plants under natural conditions are still rare. We studied the effect of temperature on the phenology of the two spring bees Osmia cornuta and Osmia bicornis, by placing bee cocoons on eleven grasslands differing in mean site temperature. On seven grasslands, we additionally studied the effect of temperature on the phenology of the red-list plant Pulsatilla vulgaris, which was the first flowering plant, and of co-flowering plants with later flowering. With a warming of 0.1°C, the abundance-weighted mean emergence of O. cornuta males advanced by 0.4 days. Females of both species did not shift their emergence. Warmer temperatures advanced the abundance-weighted mean flowering of P. vulgaris by 1.3 days per 0.1°C increase, but did not shift flowering onset of co-flowering plants. Competition for pollinators between P. vulgaris and co-flowering plants does not increase within the studied temperature range. We demonstrate that temperature advances plant flowering more strongly than bee emergence suggesting an increased risk of pollinator limitation for the first flowers of P. vulgaris.}, language = {en} }