@article{HahnBeudertGutmannetal.2021, author = {Hahn, Lukas and Beudert, Matthias and Gutmann, Marcus and Keßler, Larissa and Stahlhut, Philipp and Fischer, Lena and Karakaya, Emine and Lorson, Thomas and Thievessen, Ingo and Detsch, Rainer and L{\"u}hmann, Tessa and Luxenhofer, Robert}, title = {From Thermogelling Hydrogels toward Functional Bioinks: Controlled Modification and Cytocompatible Crosslinking}, series = {Macromolecular Bioscience}, volume = {21}, journal = {Macromolecular Bioscience}, number = {10}, doi = {10.1002/mabi.202100122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257542}, year = {2021}, abstract = {Hydrogels are key components in bioink formulations to ensure printability and stability in biofabrication. In this study, a well-known Diels-Alder two-step post-polymerization modification approach is introduced into thermogelling diblock copolymers, comprising poly(2-methyl-2-oxazoline) and thermoresponsive poly(2-n-propyl-2-oxazine). The diblock copolymers are partially hydrolyzed and subsequently modified by acid/amine coupling with furan and maleimide moieties. While the thermogelling and shear-thinning properties allow excellent printability, trigger-less cell-friendly Diels-Alder click-chemistry yields long-term shape-fidelity. The introduced platform enables easy incorporation of cell-binding moieties (RGD-peptide) for cellular interaction. The hydrogel is functionalized with RGD-peptides using thiol-maleimide chemistry and cell proliferation as well as morphology of fibroblasts seeded on top of the hydrogels confirm the cell adhesion facilitated by the peptides. Finally, bioink formulations are tested for biocompatibility by incorporating fibroblasts homogenously inside the polymer solution pre-printing. After the printing and crosslinking process good cytocompatibility is confirmed. The established bioink system combines a two-step approach by physical precursor gelation followed by an additional chemical stabilization, offering a broad versatility for further biomechanical adaptation or bioresponsive peptide modification.}, language = {en} } @article{HahnLuxenhoferHeltenetal.2021, author = {Hahn, Lukas and Luxenhofer, Robert and Helten, Holger and Forster, Stefan and Fritze, Lars and Polzin, Lando and Keßler, Larissa}, title = {ABA Type Amphiphiles with Poly(2-benzhydryl-2-oxazine) Moieties: Synthesis, Characterization and Inverse Thermogelation}, series = {Macromolecular Chemistry and Physics}, volume = {222}, journal = {Macromolecular Chemistry and Physics}, number = {17}, doi = {10.1002/macp.202100114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265124}, year = {2021}, abstract = {Thermoresponsive polymers are frequently involved in the development of materials for various applications. Here, polymers containing poly(2- benzhydryl-2-oxazine) (pBhOzi) repeating units are described for the first time. The homopolymer pBhOzi and an ABA type amphiphile comprising two flanking hydrophilic A blocks of poly(2-methyl-2-oxazoline) (pMeOx) and the hydrophobic aromatic pBhOzi central B block (pMeOx-b-pBhOzi-b-pMeOx) are synthesized and the latter is shown to exhibit inverse thermogelling properties at concentrations of 20 wt.\% in water. This behavior stands in contrast to a homologue ABA amphiphile consisting of a central poly(2-benzhydryl-2-oxazoline) block (pMeOx-b-pBhOx-b-pMeOx). No inverse thermogelling is observed with this polymer even at 25 wt.\%. For 25 wt.\% pMeOx-b-pBhOzi-b-pMeOx, a surprisingly high storage modulus of ≈22 kPa and high values for the yield and flow points of 480 Pa and 1.3 kPa are obtained. Exceeding the yield point, pronounced shear thinning is observed. Interestingly, only little difference between self-assemblies of pMeOx-b-pBhOzi-b-pMeOx and pMeOx-b-pBhOx-b-pMeOx is observed by dynamic light scattering while transmission electron microscopy images suggest that the micelles of pMeOx-b-pBhOzi-b-pMeOx interact through their hydrophilic coronas, which is probably decisive for the gel formation. Overall, this study introduces new building blocks for poly(2-oxazoline) and poly(2-oxazine)-based self-assemblies, but additional studies will be needed to unravel the exact mechanism.}, language = {en} } @article{GieselKratochwilSchlittenhardtetal.2021, author = {Giesel, Frederik L. and Kratochwil, Clemens and Schlittenhardt, Joel and Dendl, Katharina and Eiber, Matthias and Staudinger, Fabian and Kessler, Lukas and Fendler, Wolfgang P. and Lindner, Thomas and Koerber, Stefan A. and Cardinale, Jens and Sennung, David and Roehrich, Manuel and Debus, Juergen and Sathekge, Mike and Haberkorn, Uwe and Calais, Jeremie and Serfling, Sebastian and Buck, Andreas L.}, title = {Head-to-head intra-individual comparison of biodistribution and tumor uptake of \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG PET/CT in cancer patients}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {48}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {13}, issn = {1619-7070}, doi = {10.1007/s00259-021-05307-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307252}, pages = {4377-4385}, year = {2021}, abstract = {Purpose FAPI ligands (fibroblast activation protein inhibitor), a novel class of radiotracers for PET/CT imaging, demonstrated in previous studies rapid and high tumor uptake. The purpose of this study is the head-to-head intra-individual comparison of \(^{68}\)Ga-FAPI versus standard-of-care \(^{18}\)F-FDG in PET/CT in organ biodistribution and tumor uptake in patients with various cancers. Material and Methods This international retrospective multicenter analysis included PET/CT data from 71 patients from 6 centers who underwent both \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG PET/CT within a median time interval of 10 days (range 1-89 days). Volumes of interest (VOIs) were manually drawn in normal organs and tumor lesions to quantify tracer uptake by SUVmax and SUVmean. Furthermore, tumor-to-background ratios (TBR) were generated (SUVmax tumor/ SUVmax organ). Results A total of 71 patients were studied of, which 28 were female and 43 male (median age 60). In 41 of 71 patients, the primary tumor was present. Forty-three of 71 patients exhibited 162 metastatic lesions. \(^{68}\)Ga-FAPI uptake in primary tumors and metastases was comparable to 18F-FDG in most cases. The SUVmax was significantly lower for \(^{68}\)Ga-FAPI than \(^{18}\)F-FDG in background tissues such as the brain, oral mucosa, myocardium, blood pool, liver, pancreas, and colon. Thus, \(^{68}\)Ga-FAPI TBRs were significantly higher than 18F-FDG TBRs in some sites, including liver and bone metastases. Conclusion Quantitative tumor uptake is comparable between \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG, but lower background uptake in most normal organs results in equal or higher TBRs for \(^{68}\)Ga-FAPI. Thus, \(^{68}\)Ga-FAPI PET/CT may yield improved diagnostic information in various cancers and especially in tumor locations with high physiological \(^{18}\)F-FDG uptake.}, language = {en} }