@phdthesis{Heimberger2024, author = {Heimberger, Kevin}, title = {Regulation pathways of c-MYC under glutamine-starving conditions in colon carcinoma cells}, doi = {10.25972/OPUS-36331}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363316}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Colon carcinomas (CRC) are statistically among the most fatal cancer types and hence one of the top reasons for premature mortality in the developed world. CRC cells are characterized by high proliferation rates caused by deregulation of gene transcription of proto-oncogenes and general chromosomal instability. On macroscopic level, CRC cells show a strongly altered nutrient and energy metabolism. This work presents research to understand general links between the metabolism and transcription alteration. Mainly focussing on glutamine dependency, shown in colon carcinoma cells and expression pathways of the pro-proliferation protein c-MYC. Previous studies showed that a depletion of glutamine in the cultivation medium of colon carcinoma cell lines caused a proliferation arrest and a strong decrease of overall c-MYC levels. Re-addition of glutamine quickly replenished c-MYC levels through an unknown mechanism. Several proteins altering this regulation mechanism were identified and proposed as possible starting point for further in detail studies to unveil the precise biochemical pathway controlling c-MYC translation repression and reactivation in a rapid manner. On a transcriptional level the formation of RNA:DNA hybrids, so called R-loops, was observed under glutamine depleted conditions. The introduction and overexpression of RNaseH1, a R-loop degrading enzyme, in combination with an ectopically expressed c-MYC variant, independent of cellular regulation mechanisms by deleting the regulatory 3'-UTR of the c-MYC gene, lead to a high rate of apoptotic cells in culture. Expression of a functionally inactive variant of RNaseH1 abolished this effect. This indicates a regulatory function of R-loops formed during glutamine starvation in the presence of c-MYC protein in a cell. Degradation of R-loops and high c-MYC levels in this stress condition had no imminent effect on the cell cycle progression is CRC cells but disturbed the nucleotide metabolism. Nucleotide triphosphates were strongly reduced in comparison to starving cells without R-loop degradation and proliferating cells. This study proposes a model of a terminal cycle of transcription termination, unregulated initiation and elongation of transcription leading to a depletion of energy resources of cells. This could finally lead to high apoptosis of the cells. Sequencing experiments to determine a coinciding of termination sites and R-loop formation sides failed so far but show a starting point for further studies in this essential survival mechanism involving R-loop formation and c-MYC downregulation.}, subject = {Myc}, language = {en} }