@article{SchapovalovaGorlovadeMunteretal.2022, author = {Schapovalova, Olesia and Gorlova, Anna and de Munter, Johannes and Sheveleva, Elisaveta and Eropkin, Mikhail and Gorbunov, Nikita and Sicker, Michail and Umriukhin, Aleksei and Lyubchyk, Sergiy and Lesch, Klaus-Peter and Strekalova, Tatyana and Schroeter, Careen A.}, title = {Immunomodulatory effects of new phytotherapy on human macrophages and TLR4- and TLR7/8-mediated viral-like inflammation in mice}, series = {Frontiers in Medicine}, volume = {9}, journal = {Frontiers in Medicine}, issn = {2296-858X}, doi = {10.3389/fmed.2022.952977}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286301}, year = {2022}, abstract = {Background While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak. Methods The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1β) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for "sickness" behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS). Results LPS-induced in vitro release of TNF and IL-1β was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects. Conclusions Herbal IP-therapy decreases inflammation and, partly, "sickness behavior," suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects.}, language = {en} } @article{GorlovaSvirinPavlovetal.2023, author = {Gorlova, Anna and Svirin, Evgeniy and Pavlov, Dmitrii and Cespuglio, Raymond and Proshin, Andrey and Schroeter, Careen A. and Lesch, Klaus-Peter and Strekalova, Tatyana}, title = {Understanding the role of oxidative stress, neuroinflammation and abnormal myelination in excessive aggression associated with depression: recent input from mechanistic studies}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms24020915}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304917}, year = {2023}, abstract = {Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.}, language = {en} } @article{deMunterPavlovGorlovaetal.2021, author = {de Munter, Johannes and Pavlov, Dmitrii and Gorlova, Anna and Sicker, Michael and Proshin, Andrey and Kalueff, Allan V. and Svistunov, Andrey and Kiselev, Daniel and Nedorubov, Andrey and Morozov, Sergey and Umriukhin, Aleksei and Lesch, Klaus-Peter and Strekalova, Tatyana and Schroeter, Careen A.}, title = {Increased Oxidative Stress in the Prefrontal Cortex as a Shared Feature of Depressive- and PTSD-Like Syndromes: Effects of a Standardized Herbal Antioxidant}, series = {Frontiers in Nutrition}, volume = {8}, journal = {Frontiers in Nutrition}, issn = {2296-861X}, doi = {10.3389/fnut.2021.661455}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236326}, year = {2021}, abstract = {Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of "emotional" ultrasound stress (US), mice were subjected to ultrasound frequencies of 16-20 kHz, mimicking rodent sounds of anxiety/despair and "neutral" frequencies of 25-45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here.}, language = {en} }