@article{VitaleZoellerJanschetal.2021, author = {Vitale, Maria Rosaria and Z{\"o}ller, Johanna Eva Maria and Jansch, Charline and Janz, Anna and Edenhofer, Frank and Klopocki, Eva and van den Hove, Daniel and Vanmierlo, Tim and Rivero, Olga and Kasri, Nael Nadif and Ziegler, Georg Christoph and Lesch, Klaus-Peter}, title = {Generation of induced pluripotent stem cell (iPSC) lines carrying a heterozygous (UKWMPi002-A-1) and null mutant knockout (UKWMPi002-A-2) of Cadherin 13 associated with neurodevelopmental disorders using CRISPR/Cas9}, series = {Stem Cell Research}, volume = {51}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102169}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260331}, year = {2021}, abstract = {Fibroblasts isolated from a skin biopsy of a healthy 46-year-old female were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate isogenic cell lines with a gene dose-dependent deficiency of CDH13, a risk gene associated with neurodevelopmental and psychiatric disorders. Thereby, a heterozygous CDH13 knockout (CDH13\(^{+/-}\)) and a CDH13 null mutant (CDH13\(^{-/-}\)) iPSC line was obtained. All three lines showed expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal female karyotype.}, language = {en} } @article{ZieglerRadtkeVitaleetal.2021, author = {Ziegler, Georg C. and Radtke, Franziska and Vitale, Maria Rosaria and Preuße, Andr{\´e} and Klopocki, Eva and Herms, Stefan and Lesch, Klaus-Peter}, title = {Generation of multiple human iPSC lines from peripheral blood mononuclear cells of two SLC2A3 deletion and two SLC2A3 duplication carriers}, series = {Stem Cell Research}, volume = {56}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102526}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264696}, year = {2021}, abstract = {Copy number variants of SLC2A3, which encodes the glucose transporter GLUT3, are associated with several neuropsychiatric and cardiac diseases. Here, we report the successful reprogramming of peripheral blood mononuclear cells from two SLC2A3 duplication and two SLC2A3 deletion carriers and subsequent generation of two transgene-free iPSC clones per donor by Sendai viral transduction. All eight clones represent bona fide hiPSCs with high expression of pluripotency genes, ability to differentiate into cells of all three germ layers and normal karyotype. The generated cell lines will be helpful to enlighten the role of glucometabolic alterations in pathophysiological processes shared across organ boundaries.}, language = {en} } @article{JanschGuentherWaideretal.2018, author = {Jansch, Charline and G{\"u}nther, Katharina and Waider, Jonas and Ziegler, Georg C. and Forero, Andrea and Kollert, Sina and Svirin, Evgeniy and P{\"u}hringer, Dirk and Kwok, Chee Keong and Ullmann, Reinhard and Maierhofer, Anna and Flunkert, Julia and Haaf, Thomas and Edenhofer, Frank and Lesch, Klaus-Peter}, title = {Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3}, series = {Stem Cell Research}, volume = {28}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2018.02.005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176654}, pages = {136-140}, year = {2018}, abstract = {Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.}, language = {en} } @article{PrelogHilligardtSchmidtetal.2016, author = {Prelog, Martina and Hilligardt, Deborah and Schmidt, Christian A. and Przybylski, Grzegorz K. and Leierer, Johannes and Almanzar, Giovanni and El Hajj, Nady and Lesch, Klaus-Peter and Arolt, Volker and Zwanzger, Peter and Haaf, Thomas and Domschke, Katharina}, title = {Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder?}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179684}, year = {2016}, abstract = {Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders.}, language = {en} } @article{SchartlWalterShenetal.2013, author = {Schartl, Manfred and Walter, Ronald B. and Shen, Yingjia and Garcia, Tzintzuni and Catchen, Julian and Amores, Angel and Braasch, Ingo and Chalopin, Domitille and Volff, Jean-Nicolas and Lesch, Klaus-Peter and Bisazza, Angelo and Minx, Pat and Hillier, LaDeana and Wilson, Richard K. and F{\"u}rstenberg, Susan and Boore, Jeffrey and Searle, Steve and Postlethwait, John H. and Warren, Wesley C.}, title = {The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits}, series = {Nature Genetics}, volume = {45}, journal = {Nature Genetics}, number = {5}, doi = {10.1038/ng.2604}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132152}, pages = {567-572}, year = {2013}, abstract = {Several attributes intuitively considered to be typical mammalian features, such as complex behavior, live birth and malignant disease such as cancer, also appeared several times independently in lower vertebrates. The genetic mechanisms underlying the evolution of these elaborate traits are poorly understood. The platyfish, X. maculatus, offers a unique model to better understand the molecular biology of such traits. We report here the sequencing of the platyfish genome. Integrating genome assembly with extensive genetic maps identified an unexpected evolutionary stability of chromosomes in fish, in contrast to in mammals. Genes associated with viviparity show signatures of positive selection, identifying new putative functional domains and rare cases of parallel evolution. We also find that genes implicated in cognition show an unexpectedly high rate of duplicate gene retention after the teleost genome duplication event, suggesting a hypothesis for the evolution of the behavioral complexity in fish, which exceeds that found in amphibians and reptiles.}, language = {en} }