@article{ZieglerRadtkeVitaleetal.2021, author = {Ziegler, Georg C. and Radtke, Franziska and Vitale, Maria Rosaria and Preuße, Andr{\´e} and Klopocki, Eva and Herms, Stefan and Lesch, Klaus-Peter}, title = {Generation of multiple human iPSC lines from peripheral blood mononuclear cells of two SLC2A3 deletion and two SLC2A3 duplication carriers}, series = {Stem Cell Research}, volume = {56}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102526}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264696}, year = {2021}, abstract = {Copy number variants of SLC2A3, which encodes the glucose transporter GLUT3, are associated with several neuropsychiatric and cardiac diseases. Here, we report the successful reprogramming of peripheral blood mononuclear cells from two SLC2A3 duplication and two SLC2A3 deletion carriers and subsequent generation of two transgene-free iPSC clones per donor by Sendai viral transduction. All eight clones represent bona fide hiPSCs with high expression of pluripotency genes, ability to differentiate into cells of all three germ layers and normal karyotype. The generated cell lines will be helpful to enlighten the role of glucometabolic alterations in pathophysiological processes shared across organ boundaries.}, language = {en} } @article{ZieglerEhlisWeberetal.2021, author = {Ziegler, Georg C. and Ehlis, Ann-Christine and Weber, Heike and Vitale, Maria Rosaria and Z{\"o}ller, Johanna E. M. and Ku, Hsing-Ping and Schiele, Miriam A. and K{\"u}rbitz, Laura I. and Romanos, Marcel and Pauli, Paul and Kalisch, Raffael and Zwanzger, Peter and Domschke, Katharina and Fallgatter, Andreas J. and Reif, Andreas and Lesch, Klaus-Peter}, title = {A Common CDH13 Variant is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD}, series = {Genes}, volume = {12}, journal = {Genes}, number = {9}, issn = {2073-4425}, doi = {10.3390/genes12091356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245220}, year = {2021}, abstract = {The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD.}, language = {en} } @article{ZieglerAlmosMcNeilletal.2020, author = {Ziegler, Georg C. and Almos, Peter and McNeill, Rhiannon V. and Jansch, Charline and Lesch, Klaus-Peter}, title = {Cellular effects and clinical implications of SLC2A3 copy number variation}, series = {Journal of Cellular Physiology}, volume = {235}, journal = {Journal of Cellular Physiology}, number = {12}, doi = {10.1002/jcp.29753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218009}, pages = {9021 -- 9036}, year = {2020}, abstract = {SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non-allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT.}, language = {en} } @article{WolfBraunHainingetal.2016, author = {Wolf, Karen and Braun, Attila and Haining, Elizabeth J. and Tseng, Yu-Lun and Kraft, Peter and Schuhmann, Michael K. and Gotru, Sanjeev K. and Chen, Wenchun and Hermanns, Heike M. and Stoll, Guido and Lesch, Klaus-Peter and Nieswandt, Bernhard}, title = {Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0147664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146399}, pages = {e0147664}, year = {2016}, abstract = {Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization.}, language = {en} } @article{WeidnerLardenoijeEijssenetal.2019, author = {Weidner, Magdalena T. and Lardenoije, Roy and Eijssen, Lars and Mogavero, Floriana and De Groodt, Lilian P. M. T. and Popp, Sandy and Palme, Rupert and F{\"o}rstner, Konrad U. and Strekalova, Tatyana and Steinbusch, Harry W. M. and Schmitt-B{\"o}hrer, Angelika G. and Glennon, Jeffrey C. and Waider, Jonas and van den Hove, Daniel L. A. and Lesch, Klaus-Peter}, title = {Identification of cholecystokinin by genome-wide profiling as potential mediator of serotonin-dependent behavioral effects of maternal separation in the amygdala}, series = {Frontiers in Neuroscience}, volume = {13}, journal = {Frontiers in Neuroscience}, doi = {10.3389/fnins.2019.00460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201340}, pages = {460}, year = {2019}, abstract = {Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2\(^{-/-}\)) and heterozygous (Tph2\(^{+/-}\)) mice, and their wildtype littermates (Tph2\(^{+/+}\)) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2\(^{-/-}\) mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2\(^{+/-}\) mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2\(^{+/-}\) mice when compared to their Tph2\(^{-/-}\) littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability.}, language = {en} } @article{WaiderPoppMlinaretal.2019, author = {Waider, Jonas and Popp, Sandy and Mlinar, Boris and Montalbano, Alberto and Bonfiglio, Francesco and Aboagye, Benjamin and Thuy, Elisabeth and Kern, Raphael and Thiel, Christopher and Araragi, Naozumi and Svirin, Evgeniy and Schmitt-B{\"o}hrer, Angelika G. and Corradetti, Renato and Lowry, Christopher A. and Lesch, Klaus-Peter}, title = {Serotonin deficiency increases context-dependent fear learning through modulation of hippocampal activity}, series = {Frontiers in Neuroscience}, volume = {13}, journal = {Frontiers in Neuroscience}, number = {245}, issn = {1662-453X}, doi = {10.3389/fnins.2019.00245}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196077}, year = {2019}, abstract = {Brain serotonin (5-hydroxytryptamine, 5-HT) system dysfunction is implicated in exaggerated fear responses triggering various anxiety-, stress-, and trauma-related disorders. However, the underlying mechanisms are not well understood. Here, we investigated the impact of constitutively inactivated 5-HT synthesis on context-dependent fear learning and extinction using tryptophan hydroxylase 2 (Tph2) knockout mice. Fear conditioning and context-dependent fear memory extinction paradigms were combined with c-Fos imaging and electrophysiological recordings in the dorsal hippocampus (dHip). Tph2 mutant mice, completely devoid of 5-HT synthesis in brain, displayed accelerated fear memory formation and increased locomotor responses to foot shock. Furthermore, recall of context-dependent fear memory was increased. The behavioral responses were associated with increased c-Fos expression in the dHip and resistance to foot shock-induced impairment of hippocampal long-term potentiation (LTP). In conclusion, increased context-dependent fear memory resulting from brain 5-HT deficiency involves dysfunction of the hippocampal circuitry controlling contextual representation of fear-related behavioral responses.}, language = {en} } @article{VitaleZoellerJanschetal.2021, author = {Vitale, Maria Rosaria and Z{\"o}ller, Johanna Eva Maria and Jansch, Charline and Janz, Anna and Edenhofer, Frank and Klopocki, Eva and van den Hove, Daniel and Vanmierlo, Tim and Rivero, Olga and Kasri, Nael Nadif and Ziegler, Georg Christoph and Lesch, Klaus-Peter}, title = {Generation of induced pluripotent stem cell (iPSC) lines carrying a heterozygous (UKWMPi002-A-1) and null mutant knockout (UKWMPi002-A-2) of Cadherin 13 associated with neurodevelopmental disorders using CRISPR/Cas9}, series = {Stem Cell Research}, volume = {51}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102169}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260331}, year = {2021}, abstract = {Fibroblasts isolated from a skin biopsy of a healthy 46-year-old female were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate isogenic cell lines with a gene dose-dependent deficiency of CDH13, a risk gene associated with neurodevelopmental and psychiatric disorders. Thereby, a heterozygous CDH13 knockout (CDH13\(^{+/-}\)) and a CDH13 null mutant (CDH13\(^{-/-}\)) iPSC line was obtained. All three lines showed expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal female karyotype.}, language = {en} } @article{VeniaminovaCespuglioCheungetal.2017, author = {Veniaminova, Ekaterina and Cespuglio, Raymond and Cheung, Chi Wai and Umriukhin, Alexei and Markova, Nataliia and Shevtsova, Elena and Lesch, Klaus-Peter and Anthony, Daniel C. and Strekalova, Tatyana}, title = {Autism-like behaviours and memory deficits result from a Western Diet in mice}, series = {Neural Plasticity}, journal = {Neural Plasticity}, doi = {10.1155/2017/9498247}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158211}, pages = {9498247}, year = {2017}, abstract = {Nonalcoholic fatty liver disease, induced by a Western diet (WD), evokes central and peripheral inflammation that is accompanied by altered emotionality. These changes can be associated with abnormalities in social behaviour, hippocampus-dependent cognitive functions, and metabolism. Female C57BL/6J mice were fed with a regular chow or with a WD containing 0.2\% of cholesterol and 21\% of saturated fat for three weeks. WD-treated mice exhibited increased social avoidance, crawl-over and digging behaviours, decreased body-body contacts, and hyperlocomotion. The WD-fed group also displayed deficits in hippocampal-dependent performance such as contextual memory in a fear conditioning and pellet displacement paradigms. A reduction in glucose tolerance and elevated levels of serum cholesterol and leptin were also associated with the WD. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1a) mRNA, a marker of mitochondrial activity, was decreased in the prefrontal cortex, hippocampus, hypothalamus, and dorsal raphe, suggesting suppressed brain mitochondrial functions, but not in the liver. This is the first report to show that a WD can profoundly suppress social interactions and induce dominant-like behaviours in na{\"i}ve adult mice. The spectrum of behaviours that were found to be induced are reminiscent of symptoms associated with autism, and, if paralleled in humans, suggest that a WD might exacerbate autism spectrum disorder.}, language = {en} } @article{VeniaminovaCespuglioChernukhaetal.2020, author = {Veniaminova, Ekaterina and Cespuglio, Raymond and Chernukha, Irina and Schmitt-Boehrer, Angelika G. and Morozov, Sergey and Kalueff, Allan V. and Kuznetsova, Oxana and Anthony, Daniel C. and Lesch, Klaus-Peter and Strekalova, Tatyana}, title = {Metabolic, Molecular, and Behavioral Effects of Western Diet in Serotonin Transporter-Deficient Mice: Rescue by Heterozygosity?}, series = {Frontiers in Neuroscience}, volume = {14}, journal = {Frontiers in Neuroscience}, issn = {1662-453X}, doi = {10.3389/fnins.2020.00024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199813}, year = {2020}, abstract = {Reduced function of the serotonin transporter (SERT) is associated with increased susceptibility to anxiety and depression and with type-2 diabetes, which is especially true in older women. Preference for a "Western diet" (WD), enriched with saturated fat, cholesterol, and sugars, may aggravate these conditions. In previous studies, decreased glucose tolerance, central and peripheral inflammation, dyslipidemia, emotional, cognitive, and social abnormalities were reported in WD-fed young female mice. We investigated the metabolic, molecular, and behavioral changes associated with a 3-week-long dietary regime of either the WD or control diet in 12-month-old female mice with three different Sert genotypes: homozygous (Slc6a4) gene knockout (Sert\(^{-/-}\): KO), heterozygous (Sert\(^{+/-}\): HET), or wild-type mice (Sert\(^{+/+}\): WT). In the WT-WD and KO-WD groups, but not in HET-WD-fed mice, most of changes induced by the WD paralleled those found in the younger mice, including brain overexpression of inflammatory marker Toll-like receptor 4 (Tlr4) and impaired hippocampus-dependent performance in the marble test. However, the 12-month-old female mice became obese. Control diet KO mice exhibited impaired hippocampal-dependent behaviors, increased brain expression of the serotonin receptors Htr2c and Htr1b, as well as increased Tlr4 and mitochondrial regulator, peroxisome proliferator-activated receptor gamma-coactivator-1a (Ppargc1a). Paradoxically, these, and other changes, were reversed in KO-WD mutants, suggesting a complex interplay between Sert deficiency and metabolic factors as well as potential compensatory molecular mechanisms that might be disrupted by the WD exposure. Most, but not all, of the changes in gene expression in the brain and liver of KO mice were not exhibited by the HET mice fed with either diet. Some of the WD-induced changes were similar in the KO-WD and HET-WD-fed mice, but the latter displayed a "rescued" phenotype in terms of diet-induced abnormalities in glucose tolerance, neuroinflammation, and hippocampus-dependent performance. Thus, complete versus partial Sert inactivation in aged mice results in distinct metabolic, molecular, and behavioral consequences in response to the WD. Our findings show that Sert\(^{+/-}\) mice are resilient to certain environmental challenges and support the concept of heterosis as evolutionary adaptive mechanism.}, language = {en} } @article{VandenHoveJakobSchrautetal.2011, author = {Van den Hove, Daniel and Jakob, Sissi Brigitte and Schraut, Karla-Gerlinde and Kenis, Gunter and Schmitt, Angelika Gertrud and Kneitz, Susanne and Scholz, Claus-J{\"u}rgen and Wiescholleck, Valentina and Ortega, Gabriela and Prickaerts, Jos and Steinbusch, Harry and Lesch, Klaus-Peter}, title = {Differential Effects of Prenatal Stress in 5-Htt Deficient Mice: Towards Molecular Mechanisms of Gene x Environment Interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75795}, year = {2011}, abstract = {Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-Htt6PS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety- and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/2) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChipH Mouse Genome 430 2.0 Array. 5-Htt +/2 offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/2 mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/2 genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotype6PS manner, indicating a gene6environment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/2 genotype shows clear adaptive capacity, 5-Htt +/2 mice -particularly females- at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction.}, subject = {Medizin}, language = {en} }