@phdthesis{Klotzky2018, author = {Klotzky, Jens}, title = {Well-posedness of a fluid-particle interaction model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169009}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {This thesis considers a model of a scalar partial differential equation in the presence of a singular source term, modeling the interaction between an inviscid fluid represented by the Burgers equation and an arbitrary, finite amount of particles moving inside the fluid, each one acting as a point-wise drag force with a particle related friction constant. \begin{align*} \partial_t u + \partial_x (u^2/2) \&= \sum_{i \in N(t)} \lambda_i \Big(h_i'(t)-u(t,h_i(t)\Big)\delta(x-h_i(t)) \end{align*} The model was introduced for the case of a single particle by Lagouti{\`e}re, Seguin and Takahashi, is a first step towards a better understanding of interaction between fluids and solids on the level of partial differential equations and has the unique property of considering entropy admissible solutions and the interaction with shockwaves. The model is extended to an arbitrary, finite number of particles and interactions like merging, splitting and crossing of particle paths are considered. The theory of entropy admissibility is revisited for the cases of interfaces and discontinuous flux conservation laws, existing results are summarized and compared, and adapted for regions of particle interactions. To this goal, the theory of germs introduced by Andreianov, Karlsen and Risebro is extended to this case of non-conservative interface coupling. Exact solutions for the Riemann Problem of particles drifting apart are computed and analysis on the behavior of entropy solutions across the particle related interfaces is used to determine physically relevant and consistent behavior for merging and splitting of particles. Well-posedness of entropy solutions to the Cauchy problem is proven, using an explicit construction method, L-infinity bounds, an approximation of the particle paths and compactness arguments to obtain existence of entropy solutions. Uniqueness is shown in the class of weak entropy solutions using almost classical Kruzkov-type analysis and the notion of L1-dissipative germs. Necessary fundamentals of hyperbolic conservation laws, including weak solutions, shocks and rarefaction waves and the Rankine-Hugoniot condition are briefly recapitulated.}, subject = {Hyperbolische Differentialgleichung}, language = {en} }