@article{KodererSchmitzWuenschetal.2022, author = {Koderer, Corinna and Schmitz, Werner and W{\"u}nsch, Anna Chiara and Balint, Julia and El-Mesery, Mohamed and Volland, Julian Manuel and Hartmann, Stefan and Linz, Christian and K{\"u}bler, Alexander Christian and Seher, Axel}, title = {Low energy status under methionine restriction is essentially independent of proliferation or cell contact inhibition}, series = {Cells}, volume = {11}, journal = {Cells}, number = {3}, issn = {2073-4409}, doi = {10.3390/cells11030551}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262329}, year = {2022}, abstract = {Nonlimited proliferation is one of the most striking features of neoplastic cells. The basis of cell division is the sufficient presence of mass (amino acids) and energy (ATP and NADH). A sophisticated intracellular network permanently measures the mass and energy levels. Thus, in vivo restrictions in the form of amino acid, protein, or caloric restrictions strongly affect absolute lifespan and age-associated diseases such as cancer. The induction of permanent low energy metabolism (LEM) is essential in this process. The murine cell line L929 responds to methionine restriction (MetR) for a short time period with LEM at the metabolic level defined by a characteristic fingerprint consisting of the molecules acetoacetate, creatine, spermidine, GSSG, UDP-glucose, pantothenate, and ATP. Here, we used mass spectrometry (LC/MS) to investigate the influence of proliferation and contact inhibition on the energy status of cells. Interestingly, the energy status was essentially independent of proliferation or contact inhibition. LC/MS analyses showed that in full medium, the cells maintain active and energetic metabolism for optional proliferation. In contrast, MetR induced LEM independently of proliferation or contact inhibition. These results are important for cell behaviour under MetR and for the optional application of restrictions in cancer therapy.}, language = {en} } @article{WuenschRiesHeinzelmannetal.2023, author = {W{\"u}nsch, Anna Chiara and Ries, Elena and Heinzelmann, Sina and Frabschka, Andrea and Wagner, Peter Christoph and Rauch, Theresa and Koderer, Corinna and El-Mesery, Mohamed and Volland, Julian Manuel and K{\"u}bler, Alexander Christian and Hartmann, Stefan and Seher, Axel}, title = {Metabolic silencing via methionine-based amino acid restriction in head and neck cancer}, series = {Current Issues in Molecular Biology}, volume = {45}, journal = {Current Issues in Molecular Biology}, number = {6}, issn = {1467-3045}, doi = {10.3390/cimb45060289}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319257}, pages = {4557 -- 4573}, year = {2023}, abstract = {In recent years, various forms of caloric restriction (CR) and amino acid or protein restriction (AAR or PR) have shown not only success in preventing age-associated diseases, such as type II diabetes and cardiovascular diseases, but also potential for cancer therapy. These strategies not only reprogram metabolism to low-energy metabolism (LEM), which is disadvantageous for neoplastic cells, but also significantly inhibit proliferation. Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumour types, with over 600,000 new cases diagnosed annually worldwide. With a 5-year survival rate of approximately 55\%, the poor prognosis has not improved despite extensive research and new adjuvant therapies. Therefore, for the first time, we analysed the potential of methionine restriction (MetR) in selected HNSCC cell lines. We investigated the influence of MetR on cell proliferation and vitality, the compensation for MetR by homocysteine, the gene regulation of different amino acid transporters, and the influence of cisplatin on cell proliferation in different HNSCC cell lines.}, language = {en} }