@article{MichalskiHeindlKaczaetal.2012, author = {Michalski, D. and Heindl, M. and Kacza, J. and Laignel, F. and K{\"u}ppers-Tiedt, L. and Schneider, D. and Grosche, J. and Boltze, J. and L{\"o}hr, M. and Hobohm, C. and H{\"a}rtig, W.}, title = {Spatio-temporal course of macrophage-like cell accumulation after experimental embolic stroke depending on treatment with tissue plasminogen activator and its combination with hyperbaric oxygenation}, series = {European Journal of Histochemistry}, volume = {56}, journal = {European Journal of Histochemistry}, number = {2}, doi = {10.4081/ejh.2012.e14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133136}, pages = {78 -- 89}, year = {2012}, abstract = {Inflammation following ischaemic stroke attracts high priority in current research, particularly using human-like models and long-term observation periods considering translational aspects. The present study aimed on the spatio-temporal course of macrophage-like cell accumulation after experimental thromboembolic stroke and addressed microglial and astroglial reactions in the ischaemic border zone. Further, effects of tissue plasminogen activator (tPA) as currently best treatment for stroke and the potentially neuroprotective co-administration of hyperbaric oxygen (HBO) were investigated. Rats underwent middle cerebral artery occlusion and were assigned to control, tPA or tPA+HBO. Twenty-four hours, 7, 14 and 28 days were determined as observation time points. The accumulation of macrophage-like cells was semiquantitatively assessed by CD68 staining in the ischaemic area and ischaemic border zone, and linked to the clinical course. CD11b, ionized calcium binding adaptor molecule 1 (Iba), glial fibrillary acidic protein (GFAP) and Neuronal Nuclei (NeuN) were applied to reveal delayed glial and neuronal alterations. In all groups, the accumulation of macrophage-like cells increased distinctly from 24 hours to 7 days post ischaemia. tPA+HBO tended to decrease macrophage-like cell accumulation at day 14 and 28. Overall, a trend towards an association of increased accumulation and pronounced reduction of the neurological deficit was found. Concerning delayed inflammatory reactions, an activation of microglia and astrocytes with co-occurring neuronal loss was observed on day 28. Thereby, astrogliosis was found circularly in contrast to microglial activation directly in the ischaemic area. This study supports previous data on long-lasting inflammatory processes following experimental stroke, and additionally provides region-specific details on glial reactions. The tendency towards a decreasing macrophage-like cell accumulation after tPA+HBO needs to be discussed critically since neuroprotective properties were recently ascribed to long-term inflammatory processes.}, language = {en} } @article{HerzStefanescuLohretal.2022, author = {Herz, Stefan and Stefanescu, Maria R. and Lohr, David and Vogel, Patrick and Kosmala, Aleksander and Terekhov, Maxim and Weng, Andreas M. and Grunz, Jan-Peter and Bley, Thorsten A. and Schreiber, Laura M.}, title = {Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission}, series = {PloS One}, volume = {17}, journal = {PloS One}, number = {6}, doi = {10.1371/journal.pone.0270689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300129}, year = {2022}, abstract = {Background To investigate the effects of B\(_1\)-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). Methods Stenosis phantoms with different grades of stenosis (0\%, 20\%, 40\%, 60\%, 80\%, and 100\%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. Results B\(_1\)-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B\(_1\)-shimming showed shading artifacts due to local B\(_1\)\(^+\)-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B\(_1\)-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60\% and 80\%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B\(_1\)-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14\%, outside the phantoms 32\%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. Conclusions B\(_1\)-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures.}, language = {en} } @article{LinsenmannMonoranuVinceetal.2014, author = {Linsenmann, Thomas and Monoranu, Camelia M. and Vince, Giles H. and Westermaier, Thomas and Hagemann, Carsten and Kessler, Almuth F. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario}, title = {Long-term tumor control of spinal dissemination of cerebellar glioblastoma multiforme by combined adjuvant bevacizumab antibody therapy: a case report}, doi = {10.1186/1756-0500-7-496}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110536}, year = {2014}, abstract = {Background Glioblastoma multiforme located in the posterior fossa is extremely rare with a frequency up to 3.4\%. Compared with glioblastoma of the hemispheres the prognosis of infratentorial glioblastoma seems to be slightly better. Absence of brainstem invasion and low expression rates of epidermal growth factor receptor are described as factors for long-time survival due to the higher radiosensitivity of these tumors. Case presentation In this case study, we report a German female patient with an exophytic glioblastoma multiforme arising from the cerebellar tonsil and a secondary spinal manifestation. Furthermore, the tumor showed no O (6)-Methylguanine-DNA methyltransferase promotor-hypermethylation and no isocitrate dehydrogenase 1 mutations. All these signs are accompanied by significantly shorter median overall survival. A long-term tumor control of the spinal metastases was achieved by a combined temozolomide/bevacizumab and irradiation therapy, as part of a standard care administered by the treating physician team. Conclusion To our knowledge this is the first published case of a combined cerebellar exophytic glioblastoma with a subsequent solid spinal manifestation. Furthermore this case demonstrates a benefit undergoing this special adjuvant therapy regime in terms of overall survival. Due to the limited overall prognosis of the disease, spinal manifestations of glioma are rarely clinically relevant. The results of our instructive case, however, with a positive effect on both life quality and survival warrant treating future patients in the frame of a prospective clinical study.}, language = {en} } @article{FeldheimKesslerFeldheimetal.2022, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schulz, Ellina and Wend, David and Lazaridis, Lazaros and Kleinschnitz, Christoph and Glas, Martin and Ernestus, Ralf-Ingo and Brandner, Sebastian and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Effects of long-term temozolomide treatment on glioblastoma and astrocytoma WHO grade 4 stem-like cells}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms23095238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284417}, year = {2022}, abstract = {Glioblastoma leads to a fatal course within two years in more than two thirds of patients. An essential cornerstone of therapy is chemotherapy with temozolomide (TMZ). The effect of TMZ is counteracted by the cellular repair enzyme O\(^6\)-methylguanine-DNA methyltransferase (MGMT). The MGMT promoter methylation, the main regulator of MGMT expression, can change from primary tumor to recurrence, and TMZ may play a significant role in this process. To identify the potential mechanisms involved, three primary stem-like cell lines (one astrocytoma with the mutation of the isocitrate dehydrogenase (IDH), CNS WHO grade 4 (HGA)), and two glioblastoma (IDH-wildtype, CNS WHO grade 4) were treated with TMZ. The MGMT promoter methylation, migration, proliferation, and TMZ-response of the tumor cells were examined at different time points. The strong effects of TMZ treatment on the MGMT methylated cells were observed. Furthermore, TMZ led to a loss of the MGMT promoter hypermethylation and induced migratory rather than proliferative behavior. Cells with the unmethylated MGMT promoter showed more aggressive behavior after treatment, while HGA cells reacted heterogenously. Our study provides further evidence to consider the potential adverse effects of TMZ chemotherapy and a rationale for investigating potential relationships between TMZ treatment and change in the MGMT promoter methylation during relapse.}, language = {en} } @article{BeyhoffLohrThieleetal.2020, author = {Beyhoff, Niklas and Lohr, David and Thiele, Arne and Foryst-Ludwig, Anna and Klopfleisch, Robert and Schreiber, Laura M. and Kintscher, Ulrich}, title = {Myocardial Infarction After High-Dose Catecholamine Application—A Case Report From an Experimental Imaging Study}, series = {Frontiers in Cardiovascular Medicine}, volume = {7}, journal = {Frontiers in Cardiovascular Medicine}, doi = {10.3389/fcvm.2020.580296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217959}, year = {2020}, abstract = {Although heart failure following myocardial infarction (MI) represents a major health burden, underlying microstructural and functional changes remain incompletely understood. Here, we report on a case of unexpected MI after treatment with the catecholamine isoproterenol in an experimental imaging study in mice using different state-of-the-art imaging modalities. The decline in cardiac function was documented by ultrahigh-frequency echocardiography and speckle-tracking analyses. Myocardial microstructure was studied ex vivo at a spatial resolution of 100 × 100 × 100 μm\(^{3}\) using diffusion tensor magnetic resonance imaging (DT-MRI) and histopathologic analyses. Two weeks after ISO treatment, the animal showed an apical aneurysm accompanied by reduced radial strain in corresponding segments and impaired global systolic function. DT-MRI revealed a loss of contractile fiber tracts together with a disarray of remaining fibers as corresponding microstructural correlates. This preclinical case report provides valuable insights into pathophysiology and morphologic-functional relations of heart failure following MI using emerging imaging technologies.}, language = {en} } @article{BreunMonoranuKessleretal.2019, author = {Breun, Maria and Monoranu, Camelia M. and Kessler, Almuth F. and Matthies, Cordula and L{\"o}hr, Mario and Hagemann, Carsten and Schirbel, Andreas and Rowe, Steven P. and Pomper, Martin G. and Buck, Andreas K. and Wester, Hans-J{\"u}rgen and Ernestus, Ralf-Ingo and Lapa, Constantin}, title = {[\(^{68}\)Ga]-Pentixafor PET/CT for CXCR4-mediated imaging of vestibular schwannomas}, series = {Frontiers in Oncology}, volume = {9}, journal = {Frontiers in Oncology}, number = {503}, doi = {10.3389/fonc.2019.00503}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201863}, year = {2019}, abstract = {We have recently demonstrated CXCR4 overexpression in vestibular schwannomas (VS). This study investigated the feasibility of CXCR4-directed positron emission tomography/computed tomography (PET/CT) imaging of VS using the radiolabeled chemokine ligand [\(^{68}\)Ga]Pentixafor. Methods: 4 patients with 6 primarily diagnosed or pre-treated/observed VS were enrolled. All subjects underwent [\(^{68}\)Ga]Pentixafor PET/CT prior to surgical resection. Images were analyzed visually and semi-quantitatively for CXCR4 expression including calculation of tumor-to-background ratios (TBR). Immunohistochemistry served as standard of reference in three patients. Results: [\(^{68}\)Ga]Pentixafor PET/CT was visually positive in all cases. SUV\(_{mean}\) and SUV\(_{max}\) were 3.0 ± 0.3 and 3.8 ± 0.4 and TBR\(_{mean}\) and TBR\(_{max}\) were 4.0 ± 1.4 and 5.0 ± 1.7, respectively. Histological analysis confirmed CXCR4 expression in tumors. Conclusion: Non-invasive imaging of CXCR4 expression using [\(^{68}\)Ga]Pentixafor PET/CT of VS is feasible and could prove useful for in vivo assessment of CXCR4 expression.}, language = {en} } @article{FeldheimKesslerMonoranuetal.2019, author = {Feldheim, Jonas and Kessler, Almuth F. and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Changes of O\(^6\)-Methylguanine DNA Methyltransferase (MGMT) promoter methylation in glioblastoma relapse—a meta-analysis type literature review}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {12}, issn = {2072-6694}, doi = {10.3390/cancers11121837}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193040}, year = {2019}, abstract = {Methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter has emerged as strong prognostic factor in the therapy of glioblastoma multiforme. It is associated with an improved response to chemotherapy with temozolomide and longer overall survival. MGMT promoter methylation has implications for the clinical course of patients. In recent years, there have been observations of patients changing their MGMT promoter methylation from primary tumor to relapse. Still, data on this topic are scarce. Studies often consist of only few patients and provide rather contrasting results, making it hard to draw a clear conclusion on clinical implications. Here, we summarize the previous publications on this topic, add new cases of changing MGMT status in relapse and finally combine all reports of more than ten patients in a statistical analysis based on the Wilson score interval. MGMT promoter methylation changes are seen in 115 of 476 analyzed patients (24\%; CI: 0.21-0.28). We discuss potential reasons like technical issues, intratumoral heterogeneity and selective pressure of therapy. The clinical implications are still ambiguous and do not yet support a change in clinical practice. However, retesting MGMT methylation might be useful for future treatment decisions and we encourage clinical studies to address this topic}, language = {en} } @article{ElabyadTerekhovLohretal.2020, author = {Elabyad, Ibrahim A. and Terekhov, Maxim and Lohr, David and Stefanescu, Maria R. and Baltes, Steffen and Schreiber, Laura M.}, title = {A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit Cardiac MRI in Pigs at 7T}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-020-59949-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229436}, year = {2020}, abstract = {A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged antisymmetrically and flanked by seven elements on either side. The array was configured for parallel transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-resolution cardiac images were acquired with an in-plane resolution of 0.6 mm x 0.6 mm (in-vivo) and 0.3 mm x 0.3 mm (ex-vivo). The mean g-factor over the heart was 1.26 (R = 6). Static phase B-1(+) shimming in a pig body phantom with the optimal phase vectors makes possible to improve the B-1(+) homogeneity by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be adapted for arrays optimized for animals and humans with a larger number of elements (32-64) while maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).}, language = {en} } @article{KesslerFeldheimSchmittetal.2020, author = {Kessler, Almuth F. and Feldheim, Jonas and Schmitt, Dominik and Feldheim, Julia J. and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Monopolar Spindle 1 Kinase (MPS1/TTK) mRNA Expression is Associated with Earlier Development of Clinical Symptoms, Tumor Aggressiveness and Survival of Glioma Patients}, series = {Biomedicines}, volume = {8}, journal = {Biomedicines}, number = {7}, doi = {10.3390/biomedicines8070192}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236105}, year = {2020}, abstract = {Inhibition of the protein kinase MPS1, a mitotic spindle-checkpoint regulator, reinforces the effects of multiple therapies against glioblastoma multiforme (GBM) in experimental settings. We analyzed MPS1 mRNA-expression in gliomas WHO grade II, III and in clinical subgroups of GBM. Data were obtained by qPCR analysis of tumor and healthy brain specimens and correlated with the patients' clinical data. MPS1 was overexpressed in all gliomas on an mRNA level (ANOVA, p < 0.01) and correlated with tumor aggressiveness. We explain previously published conflicting results on survival: high MPS1 was associated with poorer long term survival when all gliomas were analyzed combined in one group (Cox regression: t < 24 months, p = 0.009, Hazard ratio: 8.0, 95\% CI: 1.7-38.4), with poorer survival solely in low-grade gliomas (LogRank: p = 0.02, Cox regression: p = 0.06, Hazard-Ratio: 8.0, 95\% CI: 0.9-66.7), but not in GBM (LogRank: p > 0.05). This might be due to their lower tumor volume at the therapy start. GBM patients with high MPS1 mRNA-expression developed clinical symptoms at an earlier stage. This, however, did not benefit their overall survival, most likely due to the more aggressive tumor growth. Since MPS1 mRNA-expression in gliomas was enhanced with increasing tumor aggressiveness, patients with the worst outcome might benefit best from a treatment directed against MPS1.}, language = {en} } @article{AnkenbrandShainbergHocketal.2021, author = {Ankenbrand, Markus J. and Shainberg, Liliia and Hock, Michael and Lohr, David and Schreiber, Laura M.}, title = {Sensitivity analysis for interpretation of machine learning based segmentation models in cardiac MRI}, series = {BMC Medical Imaging}, volume = {21}, journal = {BMC Medical Imaging}, number = {1}, doi = {10.1186/s12880-021-00551-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259169}, pages = {27}, year = {2021}, abstract = {Background Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. Results We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. Conclusions Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable.}, language = {en} } @article{NattmannBreunMonoranuetal.2020, author = {Nattmann, Anja and Breun, Maria and Monoranu, Camelia M. and Matthies, Cordula and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Analysis of ADAM9 regulation and function in vestibular schwannoma primary cells}, series = {BMC Research Notes}, volume = {13}, journal = {BMC Research Notes}, doi = {10.1186/s13104-020-05378-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231213}, year = {2020}, abstract = {Objective Recently, we described a disintegrin and metalloproteinase 9 (ADAM9) overexpression by Schwann cells of vestibular schwannoma (VS) and suggested that it might be a marker for VS tumor growth and invasiveness. This research note provides additional data utilizing a small cohort of VS primary cultures and tissue samples. We examined whether reconstitution of Merlin expression in VS cells regulates ADAM9 protein expression and performed lentiviral ADAM9 knock down to investigate possible effects on VS cells numbers. Moreover, the co-localization of ADAM9 and Integrins α6 and α2β1, respectively, was examined by immunofluorescence double staining. Results ADAM9 expression was not regulated by Merlin in VS. However, ADAM9 knock down led to 58\% reduction in cell numbers in VS primary cell cultures (p < 0.0001). While ADAM9 and Integrin α2β1 were co-localized in only 22\% (2 of 9) of VS, ADAM9 and Integrin α6 were co-localized in 91\% (10 of 11) of VS. Therefore, we provide first observations on possible regulatory functions of ADAM9 expression in VS.}, language = {en} } @article{FeldheimKesslerSchmittetal.2020, author = {Feldheim, Jonas and Kessler, Almuth F. and Schmitt, Dominik and Salvador, Ellaine and Monoranu, Camelia M. and Feldheim, Julia J. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Ribosomal Protein S27/Metallopanstimulin-1 (RPS27) in Glioma — A New Disease Biomarker?}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {5}, issn = {2072-6694}, doi = {10.3390/cancers12051085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203648}, year = {2020}, abstract = {Despite its significant overexpression in several malignant neoplasms, the expression of RPS27 in the central nervous system (CNS) is widely unknown. We identified the cell types expressing RPS27 in the CNS under normal and disease conditions. We acquired specimens of healthy brain (NB), adult pilocytic astrocytoma (PA) World Health Organization (WHO) grade I, anaplastic PA WHO grade III, gliomas WHO grade II/III with or without isocitrate dehydrogenase (IDH) mutation, and glioblastoma multiforme (GBM). RPS27 protein expression was examined by immunohistochemistry and double-fluorescence staining and its mRNA expression quantified by RT-PCR. Patients' clinical and tumor characteristics were collected retrospectively. RPS27 protein was specifically expressed in tumor cells and neurons, but not in healthy astrocytes. In tumor tissue, most macrophages were positive, while this was rarely the case in inflamed tissue. Compared to NB, RPS27 mRNA was in mean 6.2- and 8.8-fold enhanced in gliomas WHO grade II/III with (p < 0.01) and without IDH mutation (p = 0.01), respectively. GBM displayed a 4.6-fold increased mean expression (p = 0.02). Although RPS27 expression levels did not affect the patients' survival, their association with tumor cells and tumor-associated macrophages provides a rationale for a future investigation of a potential function during gliomagenesis and tumor immune response.}, language = {en} } @article{HagemannNeuhausDahlmannetal.2019, author = {Hagemann, Carsten and Neuhaus, Nikolas and Dahlmann, Mathias and Kessler, Almuth F. and Kobelt, Dennis and Herrmann, Pia and Eyrich, Matthias and Freitag, Benjamin and Linsenmann, Thomas and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Stein, Ulrike}, title = {Circulating MACC1 transcripts in glioblastoma patients predict prognosis and treatment response}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {6}, issn = {2072-6694}, doi = {10.3390/cancers11060825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197327}, year = {2019}, abstract = {Glioblastoma multiforme is the most aggressive primary brain tumor of adults, but lacksreliable and liquid biomarkers. We evaluated circulating plasma transcripts of metastasis-associatedin colon cancer-1 (MACC1), a prognostic biomarker for solid cancer entities, for prediction of clinicaloutcome and therapy response in glioblastomas. MACC1 transcripts were significantly higher inpatients compared to controls. Low MACC1 levels clustered together with other prognosticallyfavorable markers. It was associated with patients' prognosis in conjunction with the isocitratedehydrogenase (IDH) mutation status: IDH1 R132H mutation and low MACC1 was most favorable(median overall survival (OS) not yet reached), IDH1 wildtype and high MACC1 was worst (medianOS 8.1 months), while IDH1 wildtype and low MACC1 was intermediate (median OS 9.1 months).No patients displayed IDH1 R132H mutation and high MACC1. Patients with low MACC1 levelsreceiving standard therapy survived longer (median OS 22.6 months) than patients with high MACC1levels (median OS 8.1 months). Patients not receiving the standard regimen showed the worstprognosis, independent of MACC1 levels (low: 6.8 months, high: 4.4 months). Addition of circulatingMACC1 transcript levels to the existing prognostic workup may improve the accuracy of outcomeprediction and help define more precise risk categories of glioblastoma patients.}, language = {en} } @article{LinsenmannMonoranuAlkonyietal.2019, author = {Linsenmann, Thomas and Monoranu, Camelia M. and Alkonyi, Balint and Westermaier, Thomas and Hagemann, Carsten and Kessler, Almuth F. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario}, title = {Cerebellar liponeurocytoma - molecular signature of a rare entity and the importance of an accurate diagnosis}, series = {Interdisciplinary Neurosurgery}, volume = {16}, journal = {Interdisciplinary Neurosurgery}, doi = {10.1016/j.inat.2018.10.017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177652}, pages = {7-11}, year = {2019}, abstract = {Background: Cerebellar liponeurocytoma is an extremely rare tumour entity of the central nervous system. It is histologically characterised by prominent neuronal/neurocytic differentiation with focal lipidisation and corresponding histologically to WHO grade II. It typically develops in adults, and usually shows a low proliferative potential. Recurrences have been reported in almost 50\% of cases, and in some cases the recurrent tumour may display increased mitotic activity and proliferation index, vascular proliferations and necrosis. Thus pathological diagnosis of liponeurocytoma is challenging. This case presentation highlights the main clinical, radiographic and pathological features of a cerebellar liponeurocytoma. Case presentation: A 59-year-old, right-handed woman presented at our department with a short history of persistent headache, vertigo and gait disturbances. Examination at presentation revealed that the patient was awake, alert and fully oriented. The cranial nerve status was normal. Uncertainties were noted in the bilateral finger-to-nose testing with bradydiadochokinesis on both sides. Strength was full and no pronator drift was observed. Sensation was intact. No signs of pyramidal tract dysfunction were detected. Her gait appeared insecure. The patient underwent surgical resection. Afterward no further disturbances could be detected. Conclusions: To date >40 cases of liponeurocytoma have been reported, including cases with supratentorial location. A review of the 5 published cases of recurrent cerebellar. Liponeurocytoma revealed that the median interval between the first and second relapse was rather short, indicating uncertain malignant potential. The most recent WHO classification of brain tumours (2016) classifies the cerebellar liponeurocytoma as a separate entity and assigns the tumour to WHO grade II. Medulloblastoma is the most important differential diagnosis commonly seen in children and young adults. In contrast, cerebellar liponeurocytoma is typically diagnosed in adults. The importance of accurate diagnosis should not be underestimated especially in the view of possible further therapeutic interventions and for the determination of the patient's prognosis.}, language = {en} } @article{NicklSchulzSalvadoretal.2022, author = {Nickl, Vera and Schulz, Ellina and Salvador, Ellaine and Trautmann, Laureen and Diener, Leopold and Kessler, Almuth F. and Monoranu, Camelia M. and Dehghani, Faramarz and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Glioblastoma-derived three-dimensional ex vivo models to evaluate effects and efficacy of Tumor Treating Fields (TTFields)}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {21}, issn = {2072-6694}, doi = {10.3390/cancers14215177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290340}, year = {2022}, abstract = {Simple Summary In glioblastoma, tumor recurrence is inevitable and the prognosis of patients is poor, despite multidisciplinary treatment approaches involving surgical resection, radiotherapy and chemotherapy. Recently, Tumor Treating Fields (TTFields) have been added to the therapeutic set-up. These alternating electric fields are applied to glioblastoma at 200 kHz frequency via arrays placed on the shaved scalp of patients. Patients show varying response to this therapy. Molecular effects of TTFields have been investigated largely in cell cultures and animal models, but not in patient tissue samples. Acquisition of matched treatment-na{\"i}ve and recurrent patient tissues is a challenge. Therefore, we suggest three reliable patient-derived three-dimensional ex vivo models (primary cells grown as microtumors on murine organotypic hippocampal slices, organoids and tumor slice cultures) which may facilitate prediction of patients' treatment responses and provide important insights into clinically relevant cellular and molecular alterations under TTFields. Abstract Glioblastoma (GBM) displays a wide range of inter- and intra-tumoral heterogeneity contributing to therapeutic resistance and relapse. Although Tumor Treating Fields (TTFields) are effective for the treatment of GBM, there is a lack of ex vivo models to evaluate effects on patients' tumor biology or to screen patients for treatment efficacy. Thus, we adapted patient-derived three-dimensional tissue culture models to be compatible with TTFields application to tissue culture. Patient-derived primary cells (PDPC) were seeded onto murine organotypic hippocampal slice cultures (OHSC), and microtumor development with and without TTFields at 200 kHz was observed. In addition, organoids were generated from acute material cultured on OHSC and treated with TTFields. Lastly, the effect of TTFields on expression of the Ki67 proliferation marker was evaluated on cultured GBM slices. Microtumors exhibited increased sensitivity towards TTFields compared to monolayer cell cultures. TTFields affected tumor growth and viability, as the size of microtumors and the percentage of Ki67-positive cells decreased after treatment. Nevertheless, variability in the extent of the response was preserved between different patient samples. Therefore, these pre-clinical GBM models could provide snapshots of the tumor to simulate patient treatment response and to investigate molecular mechanisms of response and resistance.}, language = {en} } @article{FeldheimKesslerFeldheimetal.2023, author = {Feldheim, Jonas and Kessler, Almuth F. and Feldheim, Julia J. and Schmitt, Dominik and Oster, Christoph and Lazaridis, Lazaros and Glas, Martin and Ernestus, Ralf-Ingo and Monoranu, Camelia M. and L{\"o}hr, Mario and Hagemann, Carsten}, title = {BRMS1 in gliomas — an expression analysis}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers15112907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319225}, year = {2023}, abstract = {The metastatic suppressor BRMS1 interacts with critical steps of the metastatic cascade in many cancer entities. As gliomas rarely metastasize, BRMS1 has mainly been neglected in glioma research. However, its interaction partners, such as NFκB, VEGF, or MMPs, are old acquaintances in neurooncology. The steps regulated by BRMS1, such as invasion, migration, and apoptosis, are commonly dysregulated in gliomas. Therefore, BRMS1 shows potential as a regulator of glioma behavior. By bioinformatic analysis, in addition to our cohort of 118 specimens, we determined BRMS1 mRNA and protein expression as well as its correlation with the clinical course in astrocytomas IDH mutant, CNS WHO grade 2/3, and glioblastoma IDH wild-type, CNS WHO grade 4. Interestingly, we found BRMS1 protein expression to be significantly decreased in the aforementioned gliomas, while BRMS1 mRNA appeared to be overexpressed throughout. This dysregulation was independent of patients' characteristics or survival. The protein and mRNA expression differences cannot be finally explained at this stage. However, they suggest a post-transcriptional dysregulation that has been previously described in other cancer entities. Our analyses present the first data on BRMS1 expression in gliomas that can provide a starting point for further investigations.}, language = {en} } @article{SchreiberLohrBaltesetal.2023, author = {Schreiber, Laura M. and Lohr, David and Baltes, Steffen and Vogel, Ulrich and Elabyad, Ibrahim A. and Bille, Maya and Reiter, Theresa and Kosmala, Aleksander and Gassenmaier, Tobias and Stefanescu, Maria R. and Kollmann, Alena and Aures, Julia and Schnitter, Florian and Pali, Mihaela and Ueda, Yuichiro and Williams, Tatiana and Christa, Martin and Hofmann, Ulrich and Bauer, Wolfgang and Gerull, Brenda and Zernecke, Alma and Erg{\"u}n, S{\"u}leyman and Terekhov, Maxim}, title = {Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research}, series = {Frontiers in Cardiovascular Medicine}, volume = {10}, journal = {Frontiers in Cardiovascular Medicine}, issn = {2297-055X}, doi = {10.3389/fcvm.2023.1068390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317398}, year = {2023}, abstract = {A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.}, language = {en} } @article{FeldheimKesslerSchmittetal.2018, author = {Feldheim, Jonas and Kessler, Almuth F and Schmitt, Dominik and Wilczek, Lara and Linsenmann, Thomas and Dahlmann, Mathias and Monoranu, Camelia M and Ernestus, Ralf-Ingo and Hagemann, Carsten and L{\"o}hr, Mario}, title = {Expression of activating transcription factor 5 (ATF5) is increased in astrocytomas of different WHO grades and correlates with survival of glioblastoma patients}, series = {OncoTargets and Therapy}, volume = {11}, journal = {OncoTargets and Therapy}, doi = {10.2147/OTT.S176549}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177541}, pages = {8673-8684}, year = {2018}, abstract = {Background: ATF5 suppresses differentiation of neuroprogenitor cells and is overexpressed in glioblastoma (GBM). A reduction of its expression leads to apoptotic GBM cell death. Data on ATF5 expression in astrocytoma WHO grade II (low-grade astrocytoma [LGA]) are scarce and lacking on recurrent GBM. Patients and methods: ATF5 mRNA was extracted from frozen samples of patients' GBM (n=79), LGA (n=40), and normal brain (NB, n=10), quantified by duplex qPCR and correlated with retrospectively collected clinical data. ATF5 protein expression was evaluated by measuring staining intensity on immunohistochemistry. Results: ATF5 mRNA was overexpressed in LGA (sevenfold, P<0.001) and GBM (tenfold, P<0.001) compared to NB, which was confirmed on protein level. Although ATF5 mRNA expression in GBM showed a considerable fluctuation range, groups of varying biological behavior, that is, local/multifocal growth or primary tumor/relapse and the tumor localization at diagnosis, were not significantly different. ATF5 mRNA correlated with the patients' age (r=0.339, P=0.028) and inversely with Ki67-staining (r=-0.421, P=0.007). GBM patients were allocated to a low and a high ATF5 expression group by the median ATF5 overexpression compared to NB. Kaplan-Meier analysis and Cox regression indicated that ATF5 mRNA expression significantly correlated with short-term survival (t<12 months, median survival 18 vs 13 months, P=0.022, HR 2.827) and progression-free survival (PFS) (12 vs 6 months, P=0.024). This advantage vanished after 24 months (P=0.084). Conclusion: ATF5 mRNA expression could be identified as an additional, though not independent factor correlating with overall survival and PFS. Since its inhibition might lead to the selective death of glioma cells, it might serve as a potential ubiquitous therapeutic target in astrocytic tumors.}, language = {en} }