@article{VanHauteDietmannKremeretal.2016, author = {Van Haute, Lindsey and Dietmann, Sabine and Kremer, Laura and Hussain, Shobbir and Pearce, Sarah F. and Powell, Christopher A. and Rorbach, Joanna and Lantaff, Rebecca and Blanco, Sandra and Sauer, Sascha and Kotzaeridou, Urania and Hoffmann, Georg F. and Memari, Yasin and Kolb-Kokocinski, Anja and Durbin, Richard and Mayr, Johannes A. and Frye, Michaela and Prokisch, Holger and Minczuk, Michal}, title = {Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165998}, pages = {12039}, year = {2016}, abstract = {Epitranscriptome modifications are required for structure and function of RNA and defects in these pathways have been associated with human disease. Here we identify the RNA target for the previously uncharacterized 5-methylcytosine (m5C) methyltransferase NSun3 and link m5C RNA modifications with energy metabolism. Using whole-exome sequencing, we identified loss-of-function mutations in NSUN3 in a patient presenting with combined mitochondrial respiratory chain complex deficiency. Patient-derived fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of NSun3. We show that NSun3 is required for deposition of m5C at the anticodon loop in the mitochondrially encoded transfer RNA methionine (mt-tRNAMet). Further, we demonstrate that m5C deficiency in mt-tRNAMet results in the lack of 5-formylcytosine (f5C) at the same tRNA position. Our findings demonstrate that NSUN3 is necessary for efficient mitochondrial translation and reveal that f5C in human mitochondrial RNA is generated by oxidative processing of m5C.}, language = {en} } @article{SamperAgreloSchiraHeinenBeyeretal.2020, author = {Samper Agrelo, Iria and Schira-Heinen, Jessica and Beyer, Felix and Groh, Janos and B{\"u}termann, Christine and Estrada, Veronica and Poschmann, Gereon and Bribian, Ana and Jadasz, Janusz J. and Lopez-Mascaraque, Laura and Kremer, David and Martini, Rudolf and M{\"u}ller, Hans Werner and Hartung, Hans Peter and Adjaye, James and St{\"u}hler, Kai and K{\"u}ry, Patrick}, title = {Secretome analysis of mesenchymal stem cell factors fostering oligodendroglial differentiation of neural stem cells in vivo}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {12}, issn = {1422-0067}, doi = {10.3390/ijms21124350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285465}, year = {2020}, abstract = {Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.}, language = {en} }