@article{KarlJossbergerWernerSchmidtetal.2014, author = {Karl, I. and Jossberger-Werner, M. and Schmidt, N. and Horn, S. and Goebeler, M. and Leverkus, M. and Wajant, H. and Giner, T.}, title = {TRAF2 inhibits TRAIL- and CD95L-induced apoptosis and necroptosis}, series = {Cell Death \& Disease}, volume = {5}, journal = {Cell Death \& Disease}, issn = {2041-4889}, doi = {10.1038/cddis.2014.404}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119166}, pages = {e1444}, year = {2014}, abstract = {The relevance of the adaptor protein TNF receptor-associated factor 2 (TRAF2) for signal transduction of the death receptor tumour necrosis factor receptor1 (TNFR1) is well-established. The role of TRAF2 for signalling by CD95 and the TNF-related apoptosis inducing ligand (TRAIL) DRs, however, is only poorly understood. Here, we observed that knockdown (KD) of TRAF2 sensitised keratinocytes for TRAIL- and CD95L-induced apoptosis. Interestingly, while cell death was fully blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) in control cells, TRAF2-depleted keratinocytes were only partly rescued from TRAIL- and CD95L-induced cell death. In line with the idea that the only partially protective effect of zVAD-fmk on TRAIL- and CD95L-treated TRAF2-depleted keratinocytes is due to the induction of necroptosis, combined treatment with zVAD-fmk and the receptor interacting protein 1 (RIP1) inhibitor necrostatin-1 fully rescued these cells. To better understand the impact of TRAF2 levels on RIP1- and RIP3-dependent necroptosis and RIP3-independent apoptosis, we performed experiments in HeLa cells that lack endogenous RIP3 and HeLa cells stably transfected with RIP3. HeLa cells, in which necroptosis has no role, were markedly sensitised to TRAIL-induced caspase-dependent apoptosis by TRAF2 KD. In RIP3-expressing HeLa transfectants, however, KD of TRAF2 also strongly sensitised for TRAIL-induced necroptosis. Noteworthy, priming of keratinocytes with soluble TWEAK, which depletes the cytosolic pool of TRAF2-containing protein complexes, resulted in strong sensitisation for TRAIL-induced necroptosis but had only a very limited effect on TRAIL-induced apoptosis. The necroptotic TRAIL response was not dependent on endogenously produced TNF and TNFR signalling, since blocking TNF by TNFR2-Fc or anti-TNFα had no effect on necroptosis induction. Taken together, we identified TRAF2 not only as a negative regulator of DR-induced apoptosis but in particular also as an antagonist of TRAIL- and CD95L-induced necroptosis.}, language = {en} } @article{ViljurAbellaAdameketal.2022, author = {Viljur, Mari-Liis and Abella, Scott R. and Ad{\´a}mek, Martin and Alencar, Janderson Batista Rodrigues and Barber, Nicholas A. and Beudert, Burkhard and Burkle, Laura A. and Cagnolo, Luciano and Campos, Brent R. and Chao, Anne and Chergui, Brahim and Choi, Chang-Yong and Cleary, Daniel F. R. and Davis, Thomas Seth and Dechnik-V{\´a}zquez, Yanus A. and Downing, William M. and Fuentes-Ramirez, Andr{\´e}s and Gandhi, Kamal J. K. and Gehring, Catherine and Georgiev, Kostadin B. and Gimbutas, Mark and Gongalsky, Konstantin B. and Gorbunova, Anastasiya Y. and Greenberg, Cathryn H. and Hylander, Kristoffer and Jules, Erik S. and Korobushkin, Daniil I. and K{\"o}ster, Kajar and Kurth, Valerie and Lanham, Joseph Drew and Lazarina, Maria and Leverkus, Alexandro B. and Lindenmayer, David and Marra, Daniel Magnabosco and Mart{\´i}n-Pinto, Pablo and Meave, Jorge A. and Moretti, Marco and Nam, Hyun-Young and Obrist, Martin K. and Petanidou, Theodora and Pons, Pere and Potts, Simon G. and Rapoport, Irina B. and Rhoades, Paul R. and Richter, Clark and Saifutdinov, Ruslan A. and Sanders, Nathan J. and Santos, Xavier and Steel, Zachary and Tavella, Julia and Wendenburg, Clara and Wermelinger, Beat and Zaitsev, Andrey S. and Thorn, Simon}, title = {The effect of natural disturbances on forest biodiversity: an ecological synthesis}, series = {Biological Reviews}, volume = {97}, journal = {Biological Reviews}, number = {5}, doi = {10.1111/brv.12876}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287168}, pages = {1930 -- 1947}, year = {2022}, abstract = {Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55\% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the β-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.}, language = {en} }