@article{WiechmannRoehSaueretal.2019, author = {Wiechmann, Tobias and R{\"o}h, Simone and Sauer, Susann and Czamara, Darina and Arloth, Janine and K{\"o}del, Maik and Beintner, Madita and Knop, Lisanne and Menke, Andreas and Binder, Elisabeth B. and Proven{\c{c}}al, Nadine}, title = {Identification of dynamic glucocorticoid-induced methylation changes at the FKBP5 locus}, series = {Clinical Epigenetics}, volume = {11}, journal = {Clinical Epigenetics}, doi = {10.1186/s13148-019-0682-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233673}, year = {2019}, abstract = {Background Epigenetic mechanisms may play a major role in the biological embedding of early-life stress (ELS). One proposed mechanism is that glucocorticoid (GC) release following ELS exposure induces long-lasting alterations in DNA methylation (DNAm) of important regulatory genes of the stress response. Here, we investigate the dynamics of GC-dependent methylation changes in key regulatory regions of the FKBP5 locus in which ELS-associated DNAm changes have been reported. Results We repeatedly measured DNAm in human peripheral blood samples from 2 independent cohorts exposed to the GC agonist dexamethasone (DEX) using a targeted bisulfite sequencing approach, complemented by data from Illumina 450K arrays. We detected differentially methylated CpGs in enhancers co-localizing with GC receptor binding sites after acute DEX treatment (1 h, 3 h, 6 h), which returned to baseline levels within 23 h. These changes withstood correction for immune cell count differences. While we observed main effects of sex, age, body mass index, smoking, and depression symptoms on FKBP5 methylation levels, only the functional FKBP5 SNP (rs1360780) moderated the dynamic changes following DEX. This genotype effect was observed in both cohorts and included sites previously shown to be associated with ELS. Conclusion Our study highlights that DNAm levels within regulatory regions of the FKBP5 locus show dynamic changes following a GC challenge and suggest that factors influencing the dynamics of this regulation may contribute to the previously reported alterations in DNAm associated with current and past ELS exposure.}, language = {en} } @article{KnopSpilgiesRuflietal.2019, author = {Knop, Janin and Spilgies, Lisanne M. and Rufli, Stefanie and Reinhart, Ramona and Vasilikos, Lazaros and Yabal, Monica and Owsley, Erika and Jost, Philipp J. and Marsh, Rebecca A. and Wajant, Harald and Robinson, Mark D. and Kaufmann, Thomas and W. Wei-Lynn, Wong}, title = {TNFR2 induced priming of the inflammasome leads to a RIPK1-dependent cell death in the absence of XIAP}, series = {Cell Death \& Disease}, volume = {10}, journal = {Cell Death \& Disease}, doi = {10.1038/s41419-019-1938-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325946}, year = {2019}, abstract = {The pediatric immune deficiency X-linked proliferative disease-2 (XLP-2) is a unique disease, with patients presenting with either hemophagocytic lymphohistiocytosis (HLH) or intestinal bowel disease (IBD). Interestingly, XLP-2 patients display high levels of IL-18 in the serum even while in stable condition, presumably through spontaneous inflammasome activation. Recent data suggests that LPS stimulation can trigger inflammasome activation through a TNFR2/TNF/TNFR1 mediated loop in xiap-/- macrophages. Yet, the direct role TNFR2-specific activation plays in the absence of XIAP is unknown. We found TNFR2-specific activation leads to cell death in xiap-/- myeloid cells, particularly in the absence of the RING domain. RIPK1 kinase activity downstream of TNFR2 resulted in a TNF/TNFR1 cell death, independent of necroptosis. TNFR2-specific activation leads to a similar inflammatory NF-kB driven transcriptional profile as TNFR1 activation with the exception of upregulation of NLRP3 and caspase-11. Activation and upregulation of the canonical inflammasome upon loss of XIAP was mediated by RIPK1 kinase activity and ROS production. While both the inhibition of RIPK1 kinase activity and ROS production reduced cell death, as well as release of IL-1β, the release of IL-18 was not reduced to basal levels. This study supports targeting TNFR2 specifically to reduce IL-18 release in XLP-2 patients and to reduce priming of the inflammasome components.}, language = {en} }