@article{JohnsonAkiyamaBlackburnetal.2023, author = {Johnson, Michael D. and Akiyama, Kazunori and Blackburn, Lindy and Bouman, Katherine L. and Broderick, Avery E. and Cardoso, Vitor and Fender, Rob P. and Fromm, Christian M. and Galison, Peter and G{\´o}mez, Jos{\´e} L. and Haggard, Daryl and Lister, Matthew L. and Lobanov, Andrei P. and Markoff, Sera and Narayan, Ramesh and Natarajan, Priyamvada and Nichols, Tiffany and Pesce, Dominic W. and Younsi, Ziri and Chael, Andrew and Chatterjee, Koushik and Chaves, Ryan and Doboszewski, Juliusz and Dodson, Richard and Doeleman, Sheperd S. and Elder, Jamee and Fitzpatrick, Garret and Haworth, Kari and Houston, Janice and Issaoun, Sara and Kovalev, Yuri Y. and Levis, Aviad and Lico, Rocco and Marcoci, Alexandru and Martens, Niels C. M. and Nagar, Neil M. and Oppenheimer, Aaron and Palumbo, Daniel C. M. and Ricarte, Angelo and Rioja, Mar{\´i}a  J. and Roelofs, Freek and Thresher, Ann C. and Tiede, Paul and Weintroub, Jonathan and Wielgus, Maciek}, title = {Key science goals for the next-generation Event Horizon Telescope}, series = {Galaxies}, volume = {11}, journal = {Galaxies}, number = {3}, issn = {2075-4434}, doi = {10.3390/galaxies11030061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313525}, year = {2023}, abstract = {The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide.}, language = {en} } @article{LeichWeissbachKleinetal.2013, author = {Leich, E. and Weißbach, S. and Klein, H.-U. and Grieb, T. and Pischimarov, J. and St{\"u}hmer, T. and Chatterjee, M. and Steinbrunn, T. and Langer, C. and Eilers, M. and Knop, S. and Einsele, H. and Bargou, R. and Rosenwald, A.}, title = {Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling molecules}, series = {Blood Cancer Journal}, volume = {3}, journal = {Blood Cancer Journal}, number = {e102}, doi = {10.1038/bcj.2012.47}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128663}, year = {2013}, abstract = {Multiple myeloma (MM) is a largely incurable plasma cell malignancy with a poorly understood and heterogeneous clinical course. To identify potential, functionally relevant somatic mutations in MM, we performed whole-exome sequencing of five primary MM, corresponding germline DNA and six MM cell lines, and developed a bioinformatics strategy that also integrated published mutational data of 38 MM patients. Our analysis confirms that identical, recurrent mutations of single genes are infrequent in MM, but highlights that mutations cluster in important cellular pathways. Specifically, we show enrichment of mutations in adhesion molecules of MM cells, emphasizing the important role for the interaction of the MM cells with their microenvironment. We describe an increased rate of mutations in receptor tyrosine kinases (RTKs) and associated signaling effectors, for example, in EGFR, ERBB3, KRAS and MAP2K2, pointing to a role of aberrant RTK signaling in the development or progression of MM. The diversity of mutations affecting different nodes of a particular signaling network appears to be an intrinsic feature of individual MM samples, and the elucidation of intra- as well as interindividual redundancy in mutations that affect survival pathways will help to better tailor targeted therapeutic strategies to the specific needs of the MM patient.}, language = {en} } @article{BoulosSaeedChatterjeeetal.2021, author = {Boulos, Joelle C. and Saeed, Mohamed E. M. and Chatterjee, Manik and B{\"u}lb{\"u}l, Yagmur and Crudo, Francesco and Marko, Doris and Munder, Markus and Klauck, Sabine M. and Efferth, Thomas}, title = {Repurposing of the ALK inhibitor crizotinib for acute leukemia and multiple myeloma cells}, series = {Pharmaceuticals}, volume = {14}, journal = {Pharmaceuticals}, number = {11}, issn = {1424-8247}, doi = {10.3390/ph14111126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250258}, year = {2021}, abstract = {Crizotinib was a first generation of ALK tyrosine kinase inhibitor approved for the treatment of ALK-positive non-small-cell lung carcinoma (NSCLC) patients. COMPARE and cluster analyses of transcriptomic data of the NCI cell line panel indicated that genes with different cellular functions regulated the sensitivity or resistance of cancer cells to crizotinib. Transcription factor binding motif analyses in gene promoters divulged two transcription factors possibly regulating the expression of these genes, i.e., RXRA and GATA1, which are important for leukemia and erythroid development, respectively. COMPARE analyses also implied that cell lines of various cancer types displayed varying degrees of sensitivity to crizotinib. Unexpectedly, leukemia but not lung cancer cells were the most sensitive cells among the different types of NCI cancer cell lines. Re-examining this result in another panel of cell lines indeed revealed that crizotinib exhibited potent cytotoxicity towards acute myeloid leukemia and multiple myeloma cells. P-glycoprotein-overexpressing CEM/ADR5000 leukemia cells were cross-resistant to crizotinib. NCI-H929 multiple myeloma cells were the most sensitive cells. Hence, we evaluated the mode of action of crizotinib on these cells. Although crizotinib is a TKI, it showed highest correlation rates with DNA topoisomerase II inhibitors and tubulin inhibitors. The altered gene expression profiles after crizotinib treatment predicted several networks, where TOP2A and genes related to cell cycle were downregulated. Cell cycle analyses showed that cells incubated with crizotinib for 24 h accumulated in the G\(_2\)M phase. Crizotinib also increased the number of p-H3(Ser10)-positive NCI-H929 cells illustrating crizotinib's ability to prevent mitotic exit. However, cells accumulated in the sub-G\(_0\)G\(_1\) fraction with longer incubation periods, indicating apoptosis induction. Additionally, crizotinib disassembled the tubulin network of U2OS cells expressing an α-tubulin-GFP fusion protein, preventing migration of cancer cells. This result was verified by in vitro tubulin polymerization assays. In silico molecular docking also revealed a strong binding affinity of crizotinib to the colchicine and Vinca alkaloid binding sites. Taken together, these results demonstrate that crizotinib destabilized microtubules. Additionally, the decatenation assay showed that crizotinib partwise inhibited the catalytic activity of DNA topoisomerase II. In conclusion, crizotinib exerted kinase-independent cytotoxic effects through the dual inhibition of tubulin polymerization and topoisomerase II and might be used to treat not only NSCLC but also multiple myeloma.}, language = {en} }