@article{KleinschnitzGrundWingleretal.2010, author = {Kleinschnitz, Christoph and Grund, Henrike and Wingler, Kirstin and Armitage, Melanie E. and Jones, Emma and Mittal, Manish and Barit, David and Schwarz, Tobias and Geis, Christian and Kraft, Peter and Barthel, Konstanze and Schuhmann, Michael K. and Herrmann, Alexander M. and Meuth, Sven G. and Stoll, Guido and Meurer, Sabine and Schrewe, Anja and Becker, Lore and Gailus-Durner, Valerie and Fuchs, Helmut and Klopstock, Thomas and de Angelis, Martin Hrabe and Jandeleit-Dahm, Karin and Shah, Ajay M. and Weissmann, Norbert and Schmidt, Harald H. H. W.}, title = {Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68416}, year = {2010}, abstract = {Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90\% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox42/2) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox42/2 mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.}, subject = {Schlaganfall}, language = {en} } @article{KatzorkeZellerMuelleretal.2017, author = {Katzorke, Andrea and Zeller, Julia B. M. and M{\"u}ller, Laura D. and Lauer, Martin and Polak, Thomas and Reif, Andreas and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Reduced activity in the right inferior frontal gyrus in elderly APOE-E4 carriers during a verbal fluency task}, series = {Frontiers in Human Neuroscience}, volume = {11}, journal = {Frontiers in Human Neuroscience}, doi = {10.3389/fnhum.2017.00046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171892}, year = {2017}, abstract = {Apolipoprotein-E4 (APOE-E4) is a major genetic risk factor for developing Alzheimer's disease (AD). The verbal fluency task (VFT), especially the subtask category fluency, has shown to provide a good discrimination between cognitively normal controls and subjects with AD. Interestingly, APOE-E4 seems to have no effect on the behavioral performance during a VFT in healthy elderly. Thus, the purpose of the present study was to reveal possible compensation mechanisms by investigating the effect of APOE-E4 on the hemodynamic response in non-demented elderly during a VFT by using functional near-infrared spectroscopy (fNIRS). We compared performance and hemodynamic response of high risk APOE-E4/E4, -E3/E4 carriers with neutral APOE-E3/E3 non-demented subjects (N = 288; 70-77 years). No difference in performance was found. APOE-E4/E4, -E3/E4 carriers had a decreased hemodynamic response in the right inferior frontal junction (IFJ) with a corresponding higher response in the left middle frontal gyrus (MFG) during category fluency. Performance was correlated with the hemodynamic response in the MFG. We assume a compensation of decreased IFJ brain activation by utilizing the MFG during category fluency and thus resulting in no behavioral differences between APOE-groups during the performance of a VFT.}, language = {en} } @article{KarunakaranSubramanianJinetal.2023, author = {Karunakaran, Mohindar M. and Subramanian, Hariharan and Jin, Yiming and Mohammed, Fiyaz and Kimmel, Brigitte and Juraske, Claudia and Starick, Lisa and N{\"o}hren, Anna and L{\"a}nder, Nora and Willcox, Carrie R. and Singh, Rohit and Schamel, Wolfgang W. and Nikolaev, Viacheslav O. and Kunzmann, Volker and Wiemer, Andrew J. and Willcox, Benjamin E. and Herrmann, Thomas}, title = {A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-41938-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358179}, year = {2023}, abstract = {Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.}, language = {en} } @article{HerrmannKarunakaran2014, author = {Herrmann, Thomas and Karunakaran, Mohindar M.}, title = {The Vγ9Vδ2 T cell antigen receptor and butyrophilin-3 A1: models of interaction, the possibility of co-evolution, and the case of dendritic epidermal T cells}, doi = {10.3389/fimmu.2014.00648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111141}, year = {2014}, abstract = {Most circulating human gamma delta T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains show a Vγ9-JP (Vγ2-Jγ1.2) rearrangement and are paired with Vδ2-containing δ-chains, a dominantTCR configuration, which until recently seemed to occur in primates only. Vγ9Vδ2 T cells respond to phosphoantigens (PAg) such as (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is produced by many pathogens and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. A prerequisite for PAg-induced activation is the contact of Vγ9Vδ2 T cells with cells expressing butyrophilin-3 A1 (BTN3A1). We will first critically review models of how BTN3 might act in PAg-mediated Vγ9Vδ2 T cell activation and then address putative co-evolution of Vγ9, Vδ2, and BTN3 genes. In those rodent and lagomorphs used as animal models, all three genes are lost but a data-base analysis showed that they emerged together with placental mammals. A strong concomitant conservation of functional Vγ9, Vδ2, and BTN3 genes in other species suggests co-evolution of these three genes. A detailed analysis was performed for the new world camelid alpaca (Vicugna pacos). It provides an excellent candidate for a non-primate species with presumably functional Vγ9Vδ2 T cells since TCR rearrangements share features characteristic for PAg-reactive primate Vγ9Vδ2 TCR and proposed PAg-binding sites of BTN3A1 have been conserved. Finally, we analyze the possible functional relationship between the butyrophilin-family member Skint1 and the γδTCR-V genes used by murine dendritic epithelialT cells (DETC). Among placental mammals, we identify five rodents, the cow, a bat, and the cape golden mole as the only species concomitantly possessing potentially functional homologs of murineVγ3,Vδ4 genes, and Skint1 gene and suggest to search for DETC like cells in these species.}, language = {en} } @article{HerrmannKarunakaran2022, author = {Herrmann, Thomas and Karunakaran, Mohindar M.}, title = {Butyrophilins: γδ T cell receptor ligands, immunomodulators and more}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.876493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265944}, year = {2022}, abstract = {Butyrophilins (BTN) are relatives of the B7 family (e.g., CD80, PD-L1). They fulfill a wide range of functions including immunomodulation and bind to various receptors such as the γδ T cell receptor (γδTCR) and small molecules. One intensively studied molecule is BTN3A1, which binds via its cytoplasmic B30.2 domain, metabolites of isoprenoid synthesis, designated as phosphoantigen (PAg), The enrichment of PAgs in tumors or infected cells is sensed by Vγ9Vδ2 T cells, leading to the proliferation and execution of effector functions to remove these cells. This article discusses the contribution of BTNs, the related BTNL molecules and SKINT1 to the development, activation, and homeostasis of γδ T cells and their immunomodulatory potential, which makes them interesting targets for therapeutic intervention.}, language = {en} } @article{HerrmannHappMoellmannetal.1993, author = {Herrmann, K. H. and Happ, M. and M{\"o}llmann, K.-P. and Tomm, J. W. and Becker, Charles R. and Kraus, M. M. and Yuan, S. and Landwehr, G.}, title = {A new model for the absorption coefficient of narrow gap (Hg,Cd)Te that simultaneously considers band tails and band filling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37894}, year = {1993}, abstract = {A semiempirical model is presented that correlates the broadening of the absorption edge with both transitions below the energy gap and with transitions by the Kane band model. This model correctly fits both the absorption and luminescence spectra of narrow-gap (Hg,Cd)Te samples that have been grown by the traveling heater method as well as by molecular-beam epitaxy. The accuracy of the band-gap determination is enhanced by this model.}, language = {en} } @article{HerrmannMuenstermannStrobeletal.2018, author = {Herrmann, Johannes and Muenstermann, Marcel and Strobel, Lea and Schubert-Unkmeir, Alexandra and Woodruff, Trent M. and Gray-Owen, Scott D. and Klos, Andreas and Johswich, Kay O.}, title = {Complement C5a receptor 1 exacerbates the pathophysiology of N. meningitidis sepsis and is a potential target for disease treatment}, series = {mBio}, volume = {9}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.01755-17}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175792}, pages = {e01755-17}, year = {2018}, abstract = {Sepsis caused by Neisseria meningitidis (meningococcus) is a rapidly progressing, life-threatening disease. Because its initial symptoms are rather unspecific, medical attention is often sought too late, i.e., when the systemic inflammatory response is already unleashed. This in turn limits the success of antibiotic treatment. The complement system is generally accepted as the most important innate immune determinant against invasive meningococcal disease since it protects the host through the bactericidal membrane attack complex. However, complement activation concomitantly liberates the C5a peptide, and it remains unclear whether this potent anaphylatoxin contributes to protection and/or drives the rapidly progressing immunopathogenesis associated with meningococcal disease. Here, we dissected the specific contribution of C5a receptor 1 (C5aR1), the canonical receptor for C5a, using a mouse model of meningococcal sepsis. Mice lacking C3 or C5 displayed susceptibility that was enhanced by >1,000-fold or 100-fold, respectively, consistent with the contribution of these components to protection. In clear contrast, C5ar1\(^{-/-}\) mice resisted invasive meningococcal infection and cleared N. meningitidis more rapidly than wild-type (WT) animals. This favorable outcome stemmed from an ameliorated inflammatory cytokine response to N. meningitidis in C5ar1\(^{-/-}\) mice in both in vivo and ex vivo whole-blood infections. In addition, inhibition of C5aR1 signaling without interference with the complement bactericidal activity reduced the inflammatory response also in human whole blood. Enticingly, pharmacologic C5aR1 blockade enhanced mouse survival and lowered meningococcal burden even when the treatment was administered after sepsis induction. Together, our findings demonstrate that C5aR1 drives the pathophysiology associated with meningococcal sepsis and provides a promising target for adjunctive therapy. Importance: The devastating consequences of N. meningitidis sepsis arise due to the rapidly arising and self-propagating inflammatory response that mobilizes antibacterial defenses but also drives the immunopathology associated with meningococcemia. The complement cascade provides innate broad-spectrum protection against infection by directly damaging the envelope of pathogenic microbes through the membrane attack complex and triggers an inflammatory response via the C5a peptide and its receptor C5aR1 aimed at mobilizing cellular effectors of immunity. Here, we consider the potential of separating the bactericidal activities of the complement cascade from its immune activating function to improve outcome of N. meningitidis sepsis. Our findings demonstrate that the specific genetic or pharmacological disruption of C5aR1 rapidly ameliorates disease by suppressing the pathogenic inflammatory response and, surprisingly, allows faster clearance of the bacterial infection. This outcome provides a clear demonstration of the therapeutic benefit of the use of C5aR1-specific inhibitors to improve the outcome of invasive meningococcal disease.}, language = {en} } @article{HerrmannLotzKaragiannidisetal.2022, author = {Herrmann, Johannes and Lotz, Christopher and Karagiannidis, Christian and Weber-Carstens, Steffen and Kluge, Stefan and Putensen, Christian and Wehrfritz, Andreas and Schmidt, Karsten and Ellerkmann, Richard K. and Oswald, Daniel and Lotz, G{\"o}sta and Zotzmann, Viviane and Moerer, Onnen and K{\"u}hn, Christian and Kochanek, Matthias and Muellenbach, Ralf and Gaertner, Matthias and Fichtner, Falk and Brettner, Florian and Findeisen, Michael and Heim, Markus and Lahmer, Tobias and Rosenow, Felix and Haake, Nils and Lepper, Philipp M. and Rosenberger, Peter and Braune, Stephan and Kohls, Mirjam and Heuschmann, Peter and Meybohm, Patrick}, title = {Key characteristics impacting survival of COVID-19 extracorporeal membrane oxygenation}, series = {Critical Care}, volume = {26}, journal = {Critical Care}, number = {1}, doi = {10.1186/s13054-022-04053-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299686}, year = {2022}, abstract = {Background Severe COVID-19 induced acute respiratory distress syndrome (ARDS) often requires extracorporeal membrane oxygenation (ECMO). Recent German health insurance data revealed low ICU survival rates. Patient characteristics and experience of the ECMO center may determine intensive care unit (ICU) survival. The current study aimed to identify factors affecting ICU survival of COVID-19 ECMO patients. Methods 673 COVID-19 ARDS ECMO patients treated in 26 centers between January 1st 2020 and March 22nd 2021 were included. Data on clinical characteristics, adjunct therapies, complications, and outcome were documented. Block wise logistic regression analysis was applied to identify variables associated with ICU-survival. Results Most patients were between 50 and 70 years of age. PaO\(_{2}\)/FiO\(_{2}\) ratio prior to ECMO was 72 mmHg (IQR: 58-99). ICU survival was 31.4\%. Survival was significantly lower during the 2nd wave of the COVID-19 pandemic. A subgroup of 284 (42\%) patients fulfilling modified EOLIA criteria had a higher survival (38\%) (p = 0.0014, OR 0.64 (CI 0.41-0.99)). Survival differed between low, intermediate, and high-volume centers with 20\%, 30\%, and 38\%, respectively (p = 0.0024). Treatment in high volume centers resulted in an odds ratio of 0.55 (CI 0.28-1.02) compared to low volume centers. Additional factors associated with survival were younger age, shorter time between intubation and ECMO initiation, BMI > 35 (compared to < 25), absence of renal replacement therapy or major bleeding/thromboembolic events. Conclusions Structural and patient-related factors, including age, comorbidities and ECMO case volume, determined the survival of COVID-19 ECMO. These factors combined with a more liberal ECMO indication during the 2nd wave may explain the reasonably overall low survival rate. Careful selection of patients and treatment in high volume ECMO centers was associated with higher odds of ICU survival.}, language = {en} } @article{HagemannNeuhausDahlmannetal.2019, author = {Hagemann, Carsten and Neuhaus, Nikolas and Dahlmann, Mathias and Kessler, Almuth F. and Kobelt, Dennis and Herrmann, Pia and Eyrich, Matthias and Freitag, Benjamin and Linsenmann, Thomas and Monoranu, Camelia M. and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Stein, Ulrike}, title = {Circulating MACC1 transcripts in glioblastoma patients predict prognosis and treatment response}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {6}, issn = {2072-6694}, doi = {10.3390/cancers11060825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197327}, year = {2019}, abstract = {Glioblastoma multiforme is the most aggressive primary brain tumor of adults, but lacksreliable and liquid biomarkers. We evaluated circulating plasma transcripts of metastasis-associatedin colon cancer-1 (MACC1), a prognostic biomarker for solid cancer entities, for prediction of clinicaloutcome and therapy response in glioblastomas. MACC1 transcripts were significantly higher inpatients compared to controls. Low MACC1 levels clustered together with other prognosticallyfavorable markers. It was associated with patients' prognosis in conjunction with the isocitratedehydrogenase (IDH) mutation status: IDH1 R132H mutation and low MACC1 was most favorable(median overall survival (OS) not yet reached), IDH1 wildtype and high MACC1 was worst (medianOS 8.1 months), while IDH1 wildtype and low MACC1 was intermediate (median OS 9.1 months).No patients displayed IDH1 R132H mutation and high MACC1. Patients with low MACC1 levelsreceiving standard therapy survived longer (median OS 22.6 months) than patients with high MACC1levels (median OS 8.1 months). Patients not receiving the standard regimen showed the worstprognosis, independent of MACC1 levels (low: 6.8 months, high: 4.4 months). Addition of circulatingMACC1 transcript levels to the existing prognostic workup may improve the accuracy of outcomeprediction and help define more precise risk categories of glioblastoma patients.}, language = {en} } @article{GoebelPankratzAsaridouetal.2016, author = {G{\"o}bel, Kerstin and Pankratz, Susann and Asaridou, Chloi-Magdalini and Herrmann, Alexander M. and Bittner, Stefan and Merker, Monika and Ruck, Tobias and Glumm, Sarah and Langhauser, Friederike and Kraft, Peter and Krug, Thorsten F. and Breuer, Johanna and Herold, Martin and Gross, Catharina C. and Beckmann, Denise and Korb-Pap, Adelheid and Schuhmann, Michael K. and Kuerten, Stefanie and Mitroulis, Ioannis and Ruppert, Clemens and Nolte, Marc W. and Panousis, Con and Klotz, Luisa and Kehrel, Beate and Korn, Thomas and Langer, Harald F. and Pap, Thomas and Nieswandt, Bernhard and Wiendl, Heinz and Chavakis, Triantafyllos and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {11626}, doi = {10.1038/ncomms11626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165503}, year = {2016}, abstract = {Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders.}, language = {en} }