@article{DoerflerCadotteWeisseretal.2020, author = {Doerfler, Inken and Cadotte, Marc W. and Weisser, Wolfgang W. and M{\"u}ller, J{\"o}rg and Gossner, Martin M. and Heibl, Christoph and B{\"a}ssler, Claus and Thorn, Simon and Seibold, Sebastian}, title = {Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms}, series = {Journal of Applied Ecology}, volume = {57}, journal = {Journal of Applied Ecology}, number = {12}, doi = {10.1111/1365-2664.13741}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217918}, pages = {2429 -- 2440}, year = {2020}, abstract = {Land-use intensification leads to loss and degradation of habitats and is thus a major driver of biodiversity loss. Restoration strategies typically focus on promoting biodiversity but often neglect that land-use intensification could have changed the underlying mechanisms of community assembly. Since assembly mechanisms determine the diversity and composition of communities, we propose that evaluation of restoration strategies should consider effects of restoration on biodiversity and community assembly. Using a multi-taxon approach, we tested whether a strategy that promotes forest biodiversity by restoring deadwood habitats also affects assembly patterns. We assessed saproxylic (i.e. deadwood-dependent) beetles and fungi, as well as non-saproxylic plants and birds in 68 beech forest plots in southern Germany, 8 years after the commencement of a restoration project. To assess changes in community assembly, we analysed the patterns of functional-phylogenetic diversity, community-weighted mean (CWM) traits and their diversity. We hypothesized that restoration increases habitat amount and heterogeneity of deadwood and reduces canopy cover and thereby decreases the strength of environmental filters imposed by past silvicultural intensification, such as a low amount in deadwood. With the restoration of deadwood habitats, saproxylic beetle communities became less functionally-phylogenetically similar, whereas the assembly patterns of saproxylic fungi and non-saproxylic taxa remained unaffected by deadwood restoration. Among the traits analysed, deadwood diameter niche position of species was most strongly affected indicating that the enrichment of large deadwood objects led to lower functional-phylogenetical similarity of saproxylic beetles. Community assembly and traits of plants were mainly influenced by microclimate associated with changes in canopy cover. Synthesis and applications. Our results indicate that the positive effects of deadwood restoration on saproxylic beetle richness are associated with an increase in deadwood amount. This might be linked to an increase in deadwood heterogeneity, and therefore decreasing management-induced environmental filters. Deadwood enrichment can thus be considered an effective restoration strategy which reduces the negative effects of intense forest management on saproxylic taxa by not only promoting biodiversity but also by decreasing the environmental filters shaping saproxylic beetle communities, thus allowing the possibly for more interactions between species and a higher functional diversity.}, language = {en} } @article{SimonIpekHomolaetal.2018, author = {Simon, Micha and Ipek, Rojda and Homola, Gy{\"o}rgy A. and Rovituso, Damiano M. and Schampel, Andrea and Kleinschnitz, Christoph and Kuerten, Stefanie}, title = {Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis}, series = {Journal of Neuroinflammation}, volume = {15}, journal = {Journal of Neuroinflammation}, number = {225}, doi = {10.1186/s12974-018-1263-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176120}, year = {2018}, abstract = {Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) for which several new treatment options were recently introduced. Among them is the monoclonal anti-CD52 antibody alemtuzumab that depletes mainly B cells and T cells in the immune periphery. Considering the ongoing controversy about the involvement of B cells and in particular the formation of B cell aggregates in the brains of progressive MS patients, an in-depth understanding of the effects of anti-CD52 antibody treatment on the B cell compartment in the CNS itself is desirable. Methods: We used myelin basic protein (MBP)-proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 (B6) mice as B cell-dependent model of MS. Mice were treated intraperitoneally either at the peak of EAE or at 60 days after onset with 200 μg murine anti-CD52 vs. IgG2a isotype control antibody for five consecutive days. Disease was subsequently monitored for 10 days. The antigen-specific B cell/antibody response was measured by ELISPOT and ELISA. Effects on CNS infiltration and B cell aggregation were determined by immunohistochemistry. Neurodegeneration was evaluated by Luxol Fast Blue, SMI-32, and Olig2/APC staining as well as by electron microscopy and phosphorylated heavy neurofilament serum ELISA. Results: Treatment with anti-CD52 antibody attenuated EAE only when administered at the peak of disease. While there was no effect on the production of MP4-specific IgG, the treatment almost completely depleted CNS infiltrates and B cell aggregates even when given as late as 60 days after onset. On the ultrastructural level, we observed significantly less axonal damage in the spinal cord and cerebellum in chronic EAE after anti-CD52 treatment. Conclusion: Anti-CD52 treatment abrogated B cell infiltration and disrupted existing B cell aggregates in the CNS.}, language = {en} } @article{RobertsonHsiehForsteretal.2016, author = {Robertson, Kevin A. and Hsieh, Wei Yuan and Forster, Thorsten and Blanc, Mathieu and Lu, Hongjin and Crick, Peter J. and Yutuc, Eylan and Watterson, Steven and Martin, Kimberly and Griffiths, Samantha J. and Enright, Anton J. and Yamamoto, Mami and Pradeepa, Madapura M. and Lennox, Kimberly A. and Behlke, Mark A. and Talbot, Simon and Haas, J{\"u}rgen and D{\"o}lken, Lars and Griffiths, William J. and Wang, Yuqin and Angulo, Ana and Ghazal, Peter}, title = {An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway}, series = {PLoS Biology}, volume = {14}, journal = {PLoS Biology}, number = {3}, doi = {10.1371/journal.pbio.1002364}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166666}, pages = {e1002364}, year = {2016}, abstract = {In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.}, language = {en} } @article{WengHeidenreichMetzetal.2021, author = {Weng, Andreas M. and Heidenreich, Julius F. and Metz, Corona and Veldhoen, Simon and Bley, Thorsten A. and Wech, Tobias}, title = {Deep learning-based segmentation of the lung in MR-images acquired by a stack-of-spirals trajectory at ultra-short echo-times}, series = {BMC Medical Imaging}, volume = {21}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-021-00608-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260520}, year = {2021}, abstract = {Background Functional lung MRI techniques are usually associated with time-consuming post-processing, where manual lung segmentation represents the most cumbersome part. The aim of this study was to investigate whether deep learning-based segmentation of lung images which were scanned by a fast UTE sequence exploiting the stack-of-spirals trajectory can provide sufficiently good accuracy for the calculation of functional parameters. Methods In this study, lung images were acquired in 20 patients suffering from cystic fibrosis (CF) and 33 healthy volunteers, by a fast UTE sequence with a stack-of-spirals trajectory and a minimum echo-time of 0.05 ms. A convolutional neural network was then trained for semantic lung segmentation using 17,713 2D coronal slices, each paired with a label obtained from manual segmentation. Subsequently, the network was applied to 4920 independent 2D test images and results were compared to a manual segmentation using the S{\o}rensen-Dice similarity coefficient (DSC) and the Hausdorff distance (HD). Obtained lung volumes and fractional ventilation values calculated from both segmentations were compared using Pearson's correlation coefficient and Bland Altman analysis. To investigate generalizability to patients outside the CF collective, in particular to those exhibiting larger consolidations inside the lung, the network was additionally applied to UTE images from four patients with pneumonia and one with lung cancer. Results The overall DSC for lung tissue was 0.967 ± 0.076 (mean ± standard deviation) and HD was 4.1 ± 4.4 mm. Lung volumes derived from manual and deep learning based segmentations as well as values for fractional ventilation exhibited a high overall correlation (Pearson's correlation coefficent = 0.99 and 1.00). For the additional cohort with unseen pathologies / consolidations, mean DSC was 0.930 ± 0.083, HD = 12.9 ± 16.2 mm and the mean difference in lung volume was 0.032 ± 0.048 L. Conclusions Deep learning-based image segmentation in stack-of-spirals based lung MRI allows for accurate estimation of lung volumes and fractional ventilation values and promises to replace the time-consuming step of manual image segmentation in the future.}, language = {en} } @article{PetritschPannbeckerWengetal.2021, author = {Petritsch, Bernhard and Pannbecker, Pauline and Weng, Andreas M. and Grunz, Jan-Peter and Veldhoen, Simon and Bley, Thorsten A. and Kosmala, Aleksander}, title = {Split-filter dual-energy CT pulmonary angiography for the diagnosis of acute pulmonary embolism: a study on image quality and radiation dose}, series = {Quantitative Imaging in Medicine and Surgery}, volume = {11}, journal = {Quantitative Imaging in Medicine and Surgery}, number = {5}, doi = {10.21037/qims-20-740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231456}, pages = {1817-1827}, year = {2021}, abstract = {Background: Computed tomography (CT) pulmonary angiography is the diagnostic reference standard in suspected pulmonary embolism (PE). Favorable results for dual-energy CT (DECT) images have been reported for this condition. Nowadays, dual-energy data acquisition is feasible with different technical options, including a single-source split-filter approach. Therefore, the aim of this retrospective study was to investigate image quality and radiation dose of thoracic split-filter DECT in comparison to conventional single-energy CT in patients with suspected PE. Methods: A total of 110 CT pulmonary angiographies were accomplished either as standard single-energy CT with automatic tube voltage selection (ATVS) (n=58), or as split-filter DECT (n=52). Objective [pulmonary artery CT attenuation, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR)] and subjective image quality [four-point Likert scale; three readers (R)] were compared among the two study groups. Size-specific dose estimates (SSDE), dose-length-product (DLP) and volume CT dose index (CTDIvol) were assessed for radiation dose analysis. Results: Split-filter DECT images yielded 67.7\% higher SNR (27.0 vs. 16.1; P<0.001) and 61.9\% higher CNR (22.5 vs. 13.9; P<0.001) over conventional single-energy images, whereas CT attenuation was significantly lower (344.5 vs. 428.2 HU; P=0.013). Subjective image quality was rated good or excellent in 93.0\%/98.3\%/77.6\% (R1/R2/R3) of the single-energy CT scans, and 84.6\%/82.7\%/80.8\% (R1/R2/R3) of the split-filter DECT scans. SSDE, DLP and CTDIvol were significantly lower for conventional single-energy CT compared to split-filter DECT (all P<0.05), which was associated with 26.7\% higher SSDE. Conclusions: In the diagnostic workup of acute PE, the split-filter allows for dual-energy data acquisition from single-source single-layer CT scanners. The existing opportunity to assess pulmonary "perfusion" based on analysis of iodine distribution maps is associated with higher radiation dose in terms of increased SSDE than conventional single-energy CT with ATVS. Moreover, a proportion of up to 3.8\% non-diagnostic examinations in the current reference standard test for PE is not negligible.}, language = {en} } @article{HaggeMuellerBirkemoeetal.2021, author = {Hagge, Jonas and M{\"u}ller, J{\"o}rg and Birkemoe, Tone and Buse, J{\"o}rn and Christensen, Rune Haubo Bojesen and Gossner, Martin M. and Gruppe, Axel and Heibl, Christoph and Jarzabek-M{\"u}ller, Andrea and Seibold, Sebastian and Siitonen, Juha and Soutinho, Jo{\~a}o Gon{\c{c}}alo and Sverdrup-Thygeson, Anne and Thorn, Simon and Drag, Lukas}, title = {What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database}, series = {Journal of Animal Ecology}, volume = {90}, journal = {Journal of Animal Ecology}, number = {8}, doi = {10.1111/1365-2656.13512}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244717}, pages = {1934 -- 1947}, year = {2021}, abstract = {The extinction of species is a non-random process, and understanding why some species are more likely to go extinct than others is critical for conservation efforts. Functional trait-based approaches offer a promising tool to achieve this goal. In forests, deadwood-dependent (saproxylic) beetles comprise a major part of threatened species, but analyses of their extinction risk have been hindered by the availability of suitable morphological traits. To better understand the mechanisms underlying extinction in insects, we investigated the relationships between morphological features and the extinction risk of saproxylic beetles. Specifically, we hypothesised that species darker in colour, with a larger and rounder body, a lower mobility, lower sensory perception and more robust mandibles are at higher risk. We first developed a protocol for morphological trait measurements and present a database of 37 traits for 1,157 European saproxylic beetle species. Based on 13 selected, independent traits characterising aspects of colour, body shape, locomotion, sensory perception and foraging, we used a proportional-odds multiple linear mixed-effects model to model the German Red List categories of 744 species as an ordinal index of extinction risk. Six out of 13 traits correlated significantly with extinction risk. Larger species as well as species with a broad and round body had a higher extinction risk than small, slim and flattened species. Species with short wings had a higher extinction risk than those with long wings. On the contrary, extinction risk increased with decreasing wing load and with higher mandibular aspect ratio (shorter and more robust mandibles). Our study provides new insights into how morphological traits, beyond the widely used body size, determine the extinction risk of saproxylic beetles. Moreover, our approach shows that the morphological characteristics of beetles can be comprehensively represented by a selection of 13 traits. We recommend them as a starting point for functional analyses in the rapidly growing field of ecological and conservation studies of deadwood.}, language = {en} } @article{StebaniBlaimerZableretal.2023, author = {Stebani, Jannik and Blaimer, Martin and Zabler, Simon and Neun, Tilmann and Pelt, Dani{\"e}l M. and Rak, Kristen}, title = {Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-45466-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357411}, year = {2023}, abstract = {Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmark detection of helicotrema, oval and round window. A fully automated pipeline with a single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually labeled in-house datasets from cadaveric specimen (N = 43) and clinical practice (N = 9). The model robustness was further evaluated on three independent open-source datasets (N = 23 + 7 + 17 scans) consisting of cadaveric specimen scans. For the in-house datasets, Dice scores of 0.97 and 0.94, intersection-over-union scores of 0.94 and 0.89 and average Hausdorf distances of 0.065 and 0.14 voxel units were achieved. The landmark localization task was performed automatically with an average localization error of 3.3 and 5.2 voxel units. A robust, albeit reduced performance could be attained for the catalogue of three open-source datasets. Results of the ablation studies with 43 mono-parametric variations of the basal architecture and training protocol provided task-optimal parameters for both categories. Ablation studies against single-task variants of the basal architecture showed a clear performance beneft of coupling landmark localization with segmentation and a dataset-dependent performance impact on segmentation ability.}, language = {en} } @techreport{BolzNaumannRichter2024, type = {Working Paper}, author = {Bolz, Simon J. and Naumann, Fabrice and Richter, Philipp M.}, title = {Unilateral Environmental Policy and Offshoring}, doi = {10.25972/OPUS-35903}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359033}, pages = {66}, year = {2024}, abstract = {Expanding on a general equilibrium model of offshoring, we analyze the effects of a unilateral emissions tax increase on the environment, income, and inequality. Heterogeneous firms allocate labor across production tasks and emissions abatement, while only the most productive can benefit from lower labor and/or emissions costs abroad and offshore. We find a non-monotonic effect on global emissions, which decline if the initial difference in emissions taxes is small. For a sufficiently large difference, global emissions rise, implying emissions leakage of more than 100\%. The underlying driver is a global technique effect: While the emissions intensity of incumbent non-offshoring firms declines, the cleanest firms start offshoring. Moreover, offshoring firms become dirtier, induced by a reduction in the foreign effective emissions tax in general equilibrium. Implementing a BCA prevents emissions leakage, reduces income inequality in the reforming country, but raises inequality across countries.}, subject = {Umweltpolitik}, language = {en} } @article{KrahBuentgenSchaeferetal.2019, author = {Krah, Franz-Sebastian and B{\"u}ntgen, Ulf and Schaefer, Hanno and M{\"u}ller, J{\"o}rg and Andrew, Carrie and Boddy, Lynne and Diez, Jeffrey and Egli, Simon and Freckleton, Robert and Gange, Alan C. and Halvorsen, Rune and Heegaard, Einar and Heideroth, Antje and Heibl, Christoph and Heilmann-Clausen, Jacob and H{\o}iland, Klaus and Kar, Ritwika and Kauserud, H{\aa}vard and Kirk, Paul M. and Kuyper, Thomas W. and Krisai-Greilhuber, Irmgard and Norden, Jenni and Papastefanou, Phillip and Senn-Irlet, Beatrice and B{\"a}ssler, Claus}, title = {European mushroom assemblages are darker in cold climates}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10767-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224815}, year = {2019}, abstract = {Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species' geographical distributions will be critical in predicting ecosystem responses to global warming.}, language = {en} } @article{KremerKivitzSimonCamposetal.2015, author = {Kremer, Joel M and Kivitz, Alan J and Simon-Campos, Jesus A and Nasonov, Evgeny L and Tony, Hans-Peter and Lee, Soo-Kon and Vlahos, Bonnie and Hammond, Constance and Bukowski, Jack and Li, Huihua and Schulman, Seth L and Raber, Susan and Zuckerman, Andrea and Isaacs, John D}, title = {Evaluation of the effect of tofacitinib on measured glomerular filtration rate in patients with active rheumatoid arthritis: results from a randomised controlled trial}, series = {Arthritis Research \& Therapy}, volume = {17}, journal = {Arthritis Research \& Therapy}, number = {95}, doi = {10.1186/s13075-015-0612-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143409}, year = {2015}, abstract = {Introduction: Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). During the clinical development programme, increases in mean serum creatinine (SCr) of approximately 0.07 mg/dL and 0.08 mg/dL were observed which plateaued early. This study assessed changes in measured glomerular filtration rate (mGFR) with tofacitinib relative to placebo in patients with active RA. Methods: This was a randomised, placebo-controlled, Phase 1 study (NCT01484561). Patients were aged \(\geq\)18 years with active RA. Patients were randomised 2: 1 to oral tofacitinib 10 mg twice daily (BID) in Period 1 then placebo BID in Period 2 (tofacitinib -> placebo); or oral placebo BID in both Periods (placebo. placebo). Change in mGFR was evaluated by iohexol serum clearance at four time points (run-in, pre-dose in Period 1, Period 1 end, and Period 2 end). The primary endpoint was the change in mGFR from baseline to Period 1 end. Secondary endpoints included: change in mGFR at other time points; change in estimated GFR (eGFR; Cockcroft-Gault equation) and SCr; efficacy; and safety. Results: 148 patients were randomised to tofacitinib -> placebo (N = 97) or placebo -> placebo (N = 51). Baseline characteristics were similar between groups. A reduction of 8\% (90\% confidence interval [CI]: 2\%, 14\%) from baseline in adjusted geometric mean mGFR was observed during tofacitinib treatment in Period 1 vs placebo. During Period 2, mean mGFR returned towards baseline during placebo treatment, and there was no difference between the two treatment groups at the end of the study - ratio (tofacitinib -> placebo/placebo -> placebo) of adjusted geometric mean fold change of mGFR was 1.04 (90\% CI: 0.97, 1.11). Post-hoc analyses, focussed on mGFR variability in placebo -> placebo patients, were consistent with this conclusion. At study end, similar results were observed for eGFR and SCr. Clinical efficacy and safety were consistent with prior studies. Conclusion: Increases in mean SCr and decreases in eGFR in tofacitinib-treated patients with RA may occur in parallel with decreases in mean mGFR; mGFR returned towards baseline after tofacitinib discontinuation, with no significant difference vs placebo, even after post-hoc analyses. Safety monitoring will continue in ongoing and future clinical studies and routine pharmacovigilance.}, language = {en} } @article{JobstWielpuetzTriphanetal.2015, author = {Jobst, Bertram J. and Wielp{\"u}tz, Mark O. and Triphan, Simon M.F. and Anjorin, Angela and Ley-Zaporozhan, Julia and Kauczor, Hans-Ulrich and Biederer, J{\"u}rgen and Ley, Sebastian and Sedlaczek, Oliver}, title = {Morpho-Functional 1H-MRI of the Lung in COPD: Short-Term Test-Retest Reliability}, series = {PLOS ONE}, volume = {10}, journal = {PLOS ONE}, number = {9}, doi = {10.1371/journal.pone.0137282}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151365}, pages = {e0137282}, year = {2015}, abstract = {Purpose Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD) for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI) allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lungMRI protocol in COPD. Materials and Methods 20 prospectively enrolled COPD patients (GOLD I-IV) underwent 1H-MRI of the lung at 1.5T on two consecutive days, including sequences for morphology, 4D contrast-enhanced perfusion, and respiratory mechanics. Image quality and COPD-related morphological and functional changes were evaluated in consensus by three chest radiologists using a dedicated MRI-based visual scoring system. Test-retest reliability was calculated per each individual lung lobe for the extent of large airway (bronchiectasis, wall thickening, mucus plugging) and small airway abnormalities (tree in bud, peripheral bronchiectasis, mucus plugging), consolidations, nodules, parenchymal defects and perfusion defects. The presence of tracheal narrowing, dystelectasis, pleural effusion, pulmonary trunk ectasia, right ventricular enlargement and, finally, motion patterns of diaphragma and chest wall were addressed. Results Median global scores [10(Q1:8.00; Q3:16.00) vs. 11(Q1:6.00; Q3:15.00)] as well as category subscores were similar between both timepoints, and kappa statistics indicated "almost perfect" global agreement (\(\kappa\)= 0.86, 95\%CI = 0.81-0.91). Most subscores showed at least "substantial" agreement of MRI1 and MRI2 (\(\kappa\)= 0.64-1.00), whereas the agreement for the diagnosis of dystelectasis/effusion (\(\kappa\)= 0.42, 95\%CI = 0.00-0.93) was "moderate" and of tracheal abnormalities (\(\kappa\)= 0.21, 95\%CI = 0.00-0.75) "fair". Most MRI acquisitions showed at least diagnostic quality at MRI1 (276 of 278) and MRI2 (259 of 264). Conclusion Morpho-functional 1H-MRI can be obtained with reproducible image quality and high short-term test-retest reliability for COPD-related morphological and functional changes of the lung. This underlines its potential value for the monitoring of regional lung characteristics in COPD trials.}, language = {en} }