@article{SangesScheuermannZahedietal.2012, author = {Sanges, C. and Scheuermann, C. and Zahedi, R. P. and Sickmann, A. and Lamberti, A. and Migliaccio, N. and Baljuls, A. and Marra, M. and Zappavigna, S. and Reinders, J. and Rapp, U. and Abbruzzese, A. and Caraglia, M. and Arcari, P.}, title = {Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells}, series = {Cell Death and Disease}, volume = {3}, journal = {Cell Death and Disease}, number = {e276}, doi = {10.1038/cddis.2012.16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124149}, year = {2012}, abstract = {We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B- and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.}, language = {en} } @article{SangesScheuermannZahedietal.2012, author = {Sanges, C. and Scheuermann, C. and Zahedi, R. P. and Sickmann, A. and Lamberti, A. and Migliaccio, N. and Baljuls, A. and Marra, M. and Zappavigna, S. and Rapp, U. and Abbruzzese, A. and Caraglia, M. and Arcari, P.}, title = {Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells}, series = {Cell Death \& Disease}, volume = {3}, journal = {Cell Death \& Disease}, number = {e276}, doi = {10.1038/cddis.2012.16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134673}, year = {2012}, abstract = {We identified eukaryotic translation elongation factor 1A (eEF1A) Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and of apoptosis of human cancer cells. Mass spectrometry identified in vitro S21 and T88 as phosphorylation sites mediated by B-Raf but not C-Raf on eEF1A1 whereas S21 was phosphorylated on eEF1A2 by both B-and C-Raf. Interestingly, S21 belongs to the first eEF1A GTP/GDP-binding consensus sequence. Phosphorylation of S21 was strongly enhanced when both eEF1A isoforms were preincubated prior the assay with C-Raf, suggesting that the eEF1A isoforms can heterodimerize thus increasing the accessibility of S21 to the phosphate. Overexpression of eEF1A1 in COS 7 cells confirmed the phosphorylation of T88 also in vivo. Compared with wt, in COS 7 cells overexpressed phosphodeficient (A) and phospho-mimicking (D) mutants of eEF1A1 (S21A/D and T88A/D) and of eEF1A2 (S21A/D), resulted less stable and more rapidly proteasome degraded. Transfection of S21 A/D eEF1A mutants in H1355 cells increased apoptosis in comparison with the wt isoforms. It indicates that the blockage of S21 interferes with or even supports C-Raf induced apoptosis rather than cell survival. Raf-mediated regulation of this site could be a crucial mechanism involved in the functional switching of eEF1A between its role in protein biosynthesis and its participation in other cellular processes.}, language = {en} } @article{ViljurAbellaAdameketal.2022, author = {Viljur, Mari-Liis and Abella, Scott R. and Ad{\´a}mek, Martin and Alencar, Janderson Batista Rodrigues and Barber, Nicholas A. and Beudert, Burkhard and Burkle, Laura A. and Cagnolo, Luciano and Campos, Brent R. and Chao, Anne and Chergui, Brahim and Choi, Chang-Yong and Cleary, Daniel F. R. and Davis, Thomas Seth and Dechnik-V{\´a}zquez, Yanus A. and Downing, William M. and Fuentes-Ramirez, Andr{\´e}s and Gandhi, Kamal J. K. and Gehring, Catherine and Georgiev, Kostadin B. and Gimbutas, Mark and Gongalsky, Konstantin B. and Gorbunova, Anastasiya Y. and Greenberg, Cathryn H. and Hylander, Kristoffer and Jules, Erik S. and Korobushkin, Daniil I. and K{\"o}ster, Kajar and Kurth, Valerie and Lanham, Joseph Drew and Lazarina, Maria and Leverkus, Alexandro B. and Lindenmayer, David and Marra, Daniel Magnabosco and Mart{\´i}n-Pinto, Pablo and Meave, Jorge A. and Moretti, Marco and Nam, Hyun-Young and Obrist, Martin K. and Petanidou, Theodora and Pons, Pere and Potts, Simon G. and Rapoport, Irina B. and Rhoades, Paul R. and Richter, Clark and Saifutdinov, Ruslan A. and Sanders, Nathan J. and Santos, Xavier and Steel, Zachary and Tavella, Julia and Wendenburg, Clara and Wermelinger, Beat and Zaitsev, Andrey S. and Thorn, Simon}, title = {The effect of natural disturbances on forest biodiversity: an ecological synthesis}, series = {Biological Reviews}, volume = {97}, journal = {Biological Reviews}, number = {5}, doi = {10.1111/brv.12876}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287168}, pages = {1930 -- 1947}, year = {2022}, abstract = {Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55\% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the β-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.}, language = {en} }