@article{AdrianMartinezAgeronAharonianetal.2016, author = {Adri{\´a}n-Mart{\´i}nez, S. and Ageron, M. and Aharonian, F. and Aiello, S. and Albert, A. and Ameli, F. and Annasontzis, E. and Andre, M. and Androulakis, G. and Anghinolfi, M. and Anton, G. and Ardid, M. and Avgitas, T. and Barbarino, G. and Baret, B. and Barrios-Mart{\´i}, J. and Belhorma, B. and Belias, A. and Berbee, A. and van den Berg, A. and Bertin, V. and Beurthey, S. and van Beeveren, V. and Beverini, N. and Biagi, S. and Biagioni, A. and Billault, M. and Bond{\`i}, M. and Bormuth, R. and Bouhadef, B. and Bourlis, G. and Bourret, S. and Boutonnet, C. and Bouwhuis, M. and Bozza, C. and Bruijn, R. and Brunner, J. and Buis, E. and Busto, J. and Cacopardo, G. and Caillat, L. and Calmai, M. and Calvo, D. and Capone, A. and Caramete, L. and Cecchini, S. and Celli, S. and Champion, C. and Cherkaoui El Moursli, R. and Cherubini, S. and Chiarusi, T. and Circella, M. and Classen, L. and Cocimano, R. and Coelho, J. A. B. and Coleiro, A. and Colonges, S. and Coniglione, R. and Cordelli, M. and Cosquer, A. and Coyle, P. and Creusot, A. and Cuttone, G. and D'Amico, A. and De Bonis, G. and De Rosa, G. and De Sio, C. and Di Capua, F. and Di Palma, I. and D{\´i}az Garc{\´i}a, A. F. and Distefano, C. and Donzaud, C. and Dornic, D. and Dorosti-Hasankiadeh, Q. and Drakopoulou, E. and Drouhin, D. and Drury, L. and Durocher, M. and Eberl, T. and Eichie, S. and van Eijk, D. and El Bojaddaini, I. and El Khayati, N. and Elsaesser, D. and Enzenh{\"o}fer, A. and Fassi, F. and Favali, P. and Fermani, P. and Ferrara, G. and Filippidis, C. and Frascadore, G. and Fusco, L. A. and Gal, T. and Galat{\`a}, S. and Garufi, F. and Gay, P. and Gebyehu, M. and Giordano, V. and Gizani, N. and Gracia, R. and Graf, K. and Gr{\´e}goire, T. and Grella, G. and Habel, R. and Hallmann, S. and van Haren, H. and Harissopulos, S. and Heid, T. and Heijboer, A. and Heine, E. and Henry, S. and Hern{\´a}ndez-Rey, J. J. and Hevinga, M. and Hofest{\"a}dt, J. and Hugon, C. M. F. and Illuminati, G. and James, C. W. and Jansweijer, P. and Jongen, M. and de Jong, M. and Kadler, M. and Kalekin, O. and Kappes, A. and Katz, U. F. and Keller, P. and Kieft, G. and Kießling, D. and Koffeman, E. N. and Kooijman, P. and Kouchner, A. and Kulikovskiy, V. and Lahmann, R. and Lamare, P. and Leisos, A. and Leonora, E. and Lindsey Clark, M. and Liolios, A. and Llorenz Alvarez, C. D. and Lo Presti, D. and L{\"o}hner, H. and Lonardo, A. and Lotze, M. and Loucatos, S. and Maccioni, E. and Mannheim, K. and Margiotta, A. and Marinelli, A. and Mari{\c{s}}, O. and Markou, C. and Mart{\´i}nez-Mora, J. A. and Martini, A. and Mele, R. and Melis, K. W. and Michael, T. and Migliozzi, P. and Migneco, E. and Mijakowski, P. and Miraglia, A. and Mollo, C. M. and Mongelli, M. and Morganti, M. and Moussa, A. and Musico, P. and Musumeci, M. and Navas, S. and Nicoleau, C. A. and Olcina, I. and Olivetto, C. and Orlando, A. and Papaikonomou, A. and Papaleo, R. and Păvăla{\c{s}}, G. E. and Peek, H. and Pellegrino, C. and Perrina, C. and Pfutzner, M. and Piattelli, P. and Pikounis, K. and Poma, G. E. and Popa, V. and Pradier, T. and Pratolongo, F. and P{\"u}hlhofer, G. and Pulvirenti, S. and Quinn, L. and Racca, C. and Raffaelli, F. and Randazzo, N. and Rapidis, P. and Razis, P. and Real, D. and Resvanis, L. and Reubelt, J. and Riccobene, G. and Rossi, C. and Rovelli, A. and Salda{\~n}a, M. and Salvadori, I. and Samtleben, D. F. E. and S{\´a}nchez Garc{\´i}a, A. and S{\´a}nchez Losa, A. and Sanguineti, M. and Santangelo, A. and Santonocito, D. and Sapienza, P. and Schimmel, F. and Schmelling, J. and Sciacca, V. and Sedita, M. and Seitz, T. and Sgura, I. and Simeone, F. and Siotis, I. and Sipala, V. and Spisso, B. and Spurio, M. and Stavropoulos, G. and Steijger, J. and Stellacci, S. M. and Stransky, D. and Taiuti, M. and Tayalati, Y. and T{\´e}zier, D. and Theraube, S. and Thompson, L. and Timmer, P. and T{\"o}nnis, C. and Trasatti, L. and Trovato, A. and Tsirigotis, A. and Tzamarias, S. and Tzamariudaki, E. and Vallage, B. and Van Elewyk, V. and Vermeulen, J. and Vicini, P. and Viola, S. and Vivolo, D. and Volkert, M. and Voulgaris, G. and Wiggers, L. and Wilms, J. and de Wolf, E. and Zachariadou, K. and Zornoza, J. D. and Z{\´u}{\~n}iga, J.}, title = {Letter of intent for KM3NeT 2.0}, series = {Journal of Physics G-Nuclear and Particle Physics}, volume = {43}, journal = {Journal of Physics G-Nuclear and Particle Physics}, number = {8}, doi = {10.1088/0954-3899/43/8/084001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188050}, pages = {84001}, year = {2016}, abstract = {The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and}, language = {en} } @article{EdgecockCarettaDavenneetal.2013, author = {Edgecock, T. R. and Caretta, O. and Davenne, T. and Densam, C. and Fitton, M. and Kelliher, D. and Loveridge, P. and Machida, S. and Prior, C. and Rogers, C. and Rooney, M. and Thomason, J. and Wilcox, D. and Wildner, E. and Efthymiopoulos, I. and Garoby, R. and Gilardoni, S. and Hansen, C. and Benedetto, E. and Jensen, E. and Kosmicki, A. and Martini, M. and Osborne, J. and Prior, G. and Stora, T. and Melo Mendonca, T. and Vlachoudis, V. and Waaijer, C. and Cupial, P. and Chanc{\´e}, A. and Longhin, A. and Payet, J. and Zito, M. and Baussan, E. and Bobeth, C. and Bouquerel, E. and Dracos, M. and Gaudiot, G. and Lepers, B. and Osswald, F. and Poussot, P. and Vassilopoulos, N. and Wurtz, J. and Zeter, V. and Bielski, J. and Kozien, M. and Lacny, L. and Skoczen, B. and Szybinski, B. and Ustrycka, A. and Wroblewski, A. and Marie-Jeanne, M. and Balint, P. and Fourel, C. and Giraud, J. and Jacob, J. and Lamy, T. and Latrasse, L. and Sortais, P. and Thuillier, T. and Mitrofanov, S. and Loiselet, M. and Keutgen, Th. and Delbar, Th. and Debray, F. and Trophine, C. and Veys, S. and Daversin, C. and Zorin, V. and Izotov, I. and Skalyga, V. and Burt, G. and Dexter, A. C. and Kravchuk, V. L. and Marchi, T. and Cinausero, M. and Gramegna, F. and De Angelis, G. and Prete, G. and Collazuol, G. and Laveder, M. and Mazzocco, M. and Mezzetto, M. and Signorini, C. and Vardaci, E. and Di Nitto, A. and Brondi, A. and La Rana, G. and Migliozzi, P. and Moro, R. and Palladino, V. and Gelli, N. and Berkovits, D. and Hass, M. and Hirsh, T. Y. and Schuhmann, M. and Stahl, A. and Wehner, J. and Bross, A. and Kopp, J. and Neuffer, D. and Wands, R. and Bayes, R. and Laing, A. and Soler, P. and Agarwalla, S. K. and Cervera Villanueva, A. and Donini, A. and Ghosh, T. and G{\´o}mez Cadenas, J. J. and Hern{\´a}ndez, P. and Mart{\´i}n-Albo, J. and Mena, O. and Burguet-Castell, J. and Agostino, L. and Buizza-Avanzini, M. and Marafini, M. and Patzak, T. and Tonazzo, A. and Duchesneau, D. and Mosca, L. and Bogomilov, M. and Karadzhov, Y. and Matev, R. and Tsenov, R. and Akhmedov, E. and Blennow, M. and Lindner, M. and Schwetz, T. and Fern{\´a}ndez Martinez, E. and Maltoni, M. and Men{\´e}ndez, J. and Giunti, C. and Gonz{\´a}lez Garc{\´i}a, M. C. and Salvado, J. and Coloma, P. and Huber, P. and Li, T. and L{\´o}pez Pav{\´o}n, J. and Orme, C. and Pascoli, S. and Meloni, D. and Tang, J. and Winter, W. and Ohlsson, T. and Zhang, H. and Scotto-Lavina, L. and Terranova, F. and Bonesini, M. and Tortora, L. and Alekou, A. and Aslaninejad, M. and Bontoiu, C. and Kurup, A. and Jenner, L. J. and Long, K. and Pasternak, J. and Pozimski, J. and Back, J. J. and Harrison, P. and Beard, K. and Bogacz, A. and Berg, J. S. and Stratakis, D. and Witte, H. and Snopok, P. and Bliss, N. and Cordwell, M. and Moss, A. and Pattalwar, S. and Apollonio, M.}, title = {High intensity neutrino oscillation facilities in Europe}, series = {Physical Review Special Topics-Accelerators and Beams}, volume = {16}, journal = {Physical Review Special Topics-Accelerators and Beams}, number = {2}, doi = {10.1103/PhysRevSTAB.16.021002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126611}, pages = {21002}, year = {2013}, abstract = {The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.}, language = {en} } @article{IpKronerGrohetal.2012, author = {Ip, Chi Wang and Kroner, Antje and Groh, Janos and Huber, Marianne and Klein, Dennis and Spahn, Irene and Diem, Ricarda and Williams, Sarah K. and Nave, Klaus-Armin and Edgar, Julia M. and Martini, Rudolf}, title = {Neuroinflammation by Cytotoxic T-Lymphocytes Impairs Retrograde Axonal Transport in an Oligodendrocyte Mutant Mouse}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0042554}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134982}, pages = {e42554}, year = {2012}, abstract = {Mice overexpressing proteolipid protein (PLP) develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on our observations, so far not attended molecular and cellular players belonging to the immune system should be considered to understand pathogenesis in inherited myelin disorders with progressive axonal damage.}, language = {en} }