@phdthesis{JimenezPearson2005, author = {Jim{\´e}nez-Pearson, Mar{\´i}a-Antonieta}, title = {Characterization of the mechanisms of two-component signal transduction involved in motility and chemotaxis of Helicobacter pylori}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15698}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Flagellen-basierte Motilit{\"a}t und Chemotaxis stellen essentielle Pathogenit{\"a}tsfaktoren dar, die f{\"u}r die erfolgreiche Kolonisierung der Magenschleimhaut durch H. pylori notwendig sind. Die Mechanismen der Regulation der Flagellensynthese und das Chemotaxis-System von H. pylori weisen trotz einiger {\"A}hnlichkeiten fundamentale Unterschiede zu den Systemen anderer Bakterien auf. In H. pylori ist die Flagellensynthese durch eine komplex regulierte Kaskade kontrolliert, die Regulatorkomponenten wie das Zweikomponentensystem HP244/FlgR, die Sigma Faktoren 54 und 28 und den Sigma Faktor28-Antagonisten FlgM enth{\"a}lt. Das Signal, welches {\"u}ber die Histidinkinase des Zweikomponentensystems HP244/FlgR die Expression der Sigma Faktor54-abh{\"a}ngigen Klasse 2 Flagellengene reguliert, ist bisher noch nicht bekannt. Allerdings konnte mit HP137 ein Protein identifiziert werden, das im „yeast two-hybrid" System sowohl mit der korrespondierenden Kinase HP244 des Flagellenregulators FlgR, als auch mit der Flagellenkomponente FlgE´ interagiert (Rain et al., 2001). In dieser Arbeit wurde eine m{\"o}gliche Rolle von HP137 in einem R{\"u}ckkopplungsmechanismus untersucht, welcher die Aktivit{\"a}t der Histidinkinase in der Flagellenregulation kontrollieren k{\"o}nnte. Obwohl die Deletion des ORF hp137 zu einer unbeweglichen Mutante f{\"u}hrte, legen die erfolglosen Komplementations Experimente, sowie die Beobachtung, dass HP137 in vitro keinen bedeutenden Effekt auf die Aktivit{\"a}t der Histidinkinase HP244 hat nahe, dass HP137 weder in H. pylori noch im nahe verwandten C. jejuni direkt an der Flagellenregulation beteiligt ist. Das Chemotaxis-System von H. pylori unterscheidet sich vom gutuntersuchten Chemotaxis-System der Enterobakterien in einigen Aspekten. Zus{\"a}tzlich zu dem CheY Response Regulator Protein (CheY1) besitzt H. pylori eine weitere CheY-artige Receiver-Dom{\"a}ne (CheY2) welche C-terminal an die Histidinkinase CheA fusioniert ist. Zus{\"a}tzlich finden sich im Genom von H. pylori Gene, die f{\"u}r drei CheV Proteine kodieren die aus einer N-terminalen Dom{\"a}ne {\"a}hnlich CheW und einer C-terminalen Receiver Dom{\"a}ne bestehen, w{\"a}hrend man keine Orthologen zu den Genen cheB, cheR, and cheZ findet. Um einen Einblick in den Mechanismus zu erhalten, welcher die chemotaktische Reaktion von H. pylori kontrolliert, wurden Phosphotransferreaktionen zwischen den gereinigten Signalmodulen des Zweikomponentensystems in vitro untersucht. Durch in vitro-Phosphorylierungsexperimente wurde eine ATP-abh{\"a}ngige Autophosphorylierung der bifunktionellen Histidinkinase CheAY2 und von CheA´, welches ein verk{\"u}rztes Derivat von ChAY2 ohne Receiver-Dom{\"a}ne darstellt, nachgewiesen. CheA´ zeigt eine f{\"u}r an der Chemotaxis beteiligte Histidinkinasen typische Phosphorylierungskinetik mit einer ausgepr{\"a}gten exponentiellen Phase, w{\"a}hrend die Phosphorylierungskinetik von CheAY2 nur eine kurze exponentielle Phase aufweist, gefolgt von einer Phase in der die Hydrolyse von CheAY2~P {\"u}berwiegt. Es wurde gezeigt, dass die Anwesenheit einer der CheY2 Dom{\"a}ne die Stabilit{\"a}t der phosphorylierten P1 Dom{\"a}ne im CheA Teil des bifunktionellen Proteins beeinflusst. Außerdem wurde gezeigt, dass sowohl CheY1 als auch CheY2 durch CheAY2 phosphoryliert werden und dass die drei CheV Proteine die Histidinkinase CheA´~P dephosphorylieren, wenn auch mit einer im Vergleich zu CheY1 und CheY2 geringeren Affinit{\"a}t. Außerdem ist CheA´ in der Lage seine Phosphatgruppen auf CheY1 aus C. jejuni und CheY aus E. coli zu {\"u}bertragen. Retrophosphorylierungsexperimente weisen darauf hin, dass CheY1~P die Phosphatgruppe zur{\"u}ck auf die Histidinkinase CheAY2 {\"u}bertragen kann und dass die CheY2-Dom{\"a}ne in dem bifunktionellen Protein CheAY2 als „Phosphat Sink" agiert der den Phosphorylierungszustand und damit die Aktivit{\"a}t des frei diffundierbaren Proteins CheY1 reguliert, das vermutlich es mit dem Flagellenmotor interagiert. Es konnte weiterhin gezeigt werden, dass die unabh{\"a}ngige Funktion der beiden Dom{\"a}nen CheA´ und CheY2 f{\"u}r eine normale chemotaktische Signalgebung in vivo nicht ausreicht. In dieser Arbeit wurden also Hinweise auf eine komplexe Kaskade Phosphat{\"u}bertragungsreaktionen im chemotaktischen System von H. pylori gefunden, welches {\"A}hnlichkeiten zu dem Syteme-Chemotaxis von S. meliloti aufweist an denen multiple CheY Proteine beteiligt sind. Die Rolle der CheV Proteine bleibt im Moment unklar, jedoch k{\"o}nnte es sein, dass sie an einer weiteren Feinregulierung der Phosphatgruppen{\"u}bertragungsreaktionen in diesem komplexen chemotaktischen System beteiligt sind}, subject = {Helicobacter pylori}, language = {en} }