@article{LaswayKinaboMremietal.2021, author = {Lasway, Julius V. and Kinabo, Neema R. and Mremi, Rudolf F. and Martin, Emanuel H. and Nyakunga, Oliver C. and Sanya, John J. and Rwegasira, Gration M. and Lesio, Nicephor and Gideon, Hulda and Pauly, Alain and Eardley, Connal and Peters, Marcell K. and Peterson, Andrew T. and Steffan-Dewenter, Ingolf and Njovu, Henry K.}, title = {A synopsis of the Bee occurrence data of northern Tanzania}, series = {Biodiversity Data Journal}, volume = {9}, journal = {Biodiversity Data Journal}, doi = {10.3897/BDJ.9.e68190}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265018}, year = {2021}, abstract = {Background Bees (Hymenoptera: Apoidea: Anthophila) are the most important group of pollinators with about 20,507 known species worldwide. Despite the critical role of bees in providing pollination services, studies aiming at understanding which species are present across disturbance gradients are scarce. Limited taxononomic information for the existing and unidentified bee species in Tanzania make their conservation haphazard. Here, we present a dataset of bee species records obtained from a survey in nothern Tanzania i.e. Kilimanjaro, Arusha and Manyara regions. Our findings serve as baseline data necessary for understanding the diversity and distribution of bees in the northern parts of the country, which is a critical step in devising robust conservation and monitoring strategies for their populations. New information In this paper, we present information on 45 bee species belonging to 20 genera and four families sampled using a combination of sweep-netting and pan trap methods. Most species (27, ~ 60\%) belong to the family Halictidae followed by 16 species (35.5\%) from the family Apidae. Megachilidae and Andrenidae were the least represented, each with only one species (2.2\%). Additional species of Apidae and Megachilidae sampled during this survey are not yet published on Global Biodiversity Information Facility (GBIF), once they will be available on GBIF, they will be published in a subsequent paper. From a total of 953 occurrences, highest numbers were recorded in Kilimanjaro Region (n = 511), followed by Arusha (n = 410) and Manyara (n = 32), but this pattern reflects the sampling efforts of the research project rather than real bias in the distributions of bee species in northern Tanzania.}, language = {en} } @article{MayrKellerPetersetal.2021, author = {Mayr, Antonia V. and Keller, Alexander and Peters, Marcell K. and Grimmer, Gudrun and Krischke, Beate and Geyer, Mareen and Schmitt, Thomas and Steffan-Dewenter, Ingolf}, title = {Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238853}, pages = {7700 -- 7712}, year = {2021}, abstract = {Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low-quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro.}, language = {en} } @article{NjovuSteffanDewenterGebertetal.2021, author = {Njovu, Henry K. and Steffan-Dewenter, Ingolf and Gebert, Friederike and Schellenberger Costa, David and Kleyer, Michael and Wagner, Thomas and Peters, Marcell K.}, title = {Plant traits mediate the effects of climate on phytophagous beetle diversity on Mt. Kilimanjaro}, series = {Ecology}, volume = {102}, journal = {Ecology}, number = {12}, doi = {10.1002/ecy.3521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257343}, year = {2021}, abstract = {Patterns of insect diversity along elevational gradients are well described in ecology. However, it remains little tested how variation in the quantity, quality, and diversity of food resources influence these patterns. Here we analyzed the direct and indirect effects of climate, food quantity (estimated by net primary productivity), quality (variation in the specific leaf area index, leaf nitrogen to phosphorus and leaf carbon to nitrogen ratio), and food diversity (diversity of leaf traits) on the species richness of phytophagous beetles along the broad elevation and land use gradients of Mt. Kilimanjaro, Tanzania. We sampled beetles at 65 study sites located in both natural and anthropogenic habitats, ranging from 866 to 4,550 m asl. We used path analysis to unravel the direct and indirect effects of predictor variables on species richness. In total, 3,154 phytophagous beetles representing 19 families and 304 morphospecies were collected. We found that the species richness of phytophagous beetles was bimodally distributed along the elevation gradient with peaks at the lowest (˜866 m asl) and upper mid-elevations (˜3,200 m asl) and sharply declined at higher elevations. Path analysis revealed temperature- and climate-driven changes in primary productivity and leaf trait diversity to be the best predictors of changes in the species richness of phytophagous beetles. Species richness increased with increases in mean annual temperature, primary productivity, and with increases in the diversity of leaf traits of local ecosystems. Our study demonstrates that, apart from temperature, the quantity and diversity of food resources play a major role in shaping diversity gradients of phytophagous insects. Drivers of global change, leading to a change of leaf traits and causing reductions in plant diversity and productivity, may consequently reduce the diversity of herbivore assemblages.}, language = {en} }