@article{GrossAmuzudeCimanetal.2011, author = {Groß, Uwe and Amuzu, Sylvarius K. and de Ciman, Ring and Kassimova, Iparkhan and Groß, Lisa and Rabsch, Wolfgang and Rosenberg, Ulrike and Schulze, Marco and Stich, August and Zimmermann, Ortrud}, title = {Bacteremia and Antimicrobial Drug Resistance over Time, Ghana}, series = {Emerging Infectious Diseases}, volume = {17}, journal = {Emerging Infectious Diseases}, number = {10}, doi = {10.3201/edi1710.110327}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133805}, pages = {1879-1882}, year = {2011}, abstract = {Bacterial distribution and antimicrobial drug resistance were monitored in patients with bacterial bloodstream infections in rural hospitals in Ghana. In 2001-2002 and in 2009, Salmonella enterica serovar Typhi was the most prevalent pathogen. Although most S. enterica serovar Typhi isolates were chloramphenicol resistant, all isolates tested were susceptible to ciprofloxacin.}, language = {en} } @article{BaeHeidrichLevicketal.2020, author = {Bae, Soyeon and Heidrich, Lea and Levick, Shaun R. and Gossner, Martin M. and Seibold, Sebastian and Weisser, Wolfgang W. and Magdon, Paul and Serebryanyk, Alla and B{\"a}ssler, Claus and Sch{\"a}fer, Deborah and Schulze, Ernst-Detlef and Doerfler, Inken and M{\"u}ller, J{\"o}rg and Jung, Kirsten and Heurich, Marco and Fischer, Markus and Roth, Nicolas and Schall, Peter and Boch, Steffen and W{\"o}llauer, Stephan and Renner, Swen C. and M{\"u}ller, J{\"o}rg}, title = {Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi-taxa and multi-scale approach}, series = {Diversity and Distribution}, volume = {27}, journal = {Diversity and Distribution}, number = {3}, doi = {10.1111/ddi.13204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236117}, pages = {439-453}, year = {2020}, abstract = {Aim: Despite increasing interest in β-diversity, that is the spatial and temporal turnover of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the environmental filtering caused by vegetation for local, multi-taxa forest communities differing in their dispersal ability, trophic position and body size. Location: Temperate forests in five regions across Germany. Methods: In the inter-region analysis, the independent and shared effects of the regional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1-ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra-region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined. Results: In the inter-region analysis, over half of the explained variation in community composition (23\% of the total explained 35\%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less dispersive functional groups. In the intra-region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physiognomy, but the relative importance of the latter increased with increasing trophic position and body size. Main conclusions: Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conservation frameworks targeting biodiversity of multiple groups should cover both environmental and biogeographical gradients. Within regions, forest management can enhance β-diversity particularly by diversifying tree species composition and forest physiognomy.}, language = {en} } @article{HartmannReisslandMaieretal.2021, author = {Hartmann, Oliver and Reissland, Michaela and Maier, Carina R. and Fischer, Thomas and Prieto-Garcia, Cristian and Baluapuri, Apoorva and Schwarz, Jessica and Schmitz, Werner and Garrido-Rodriguez, Martin and Pahor, Nikolett and Davies, Clare C. and Bassermann, Florian and Orian, Amir and Wolf, Elmar and Schulze, Almut and Calzado, Marco A. and Rosenfeldt, Mathias T. and Diefenbacher, Markus E.}, title = {Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.641618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230949}, year = {2021}, abstract = {Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53fl/fl:lsl-KRasG12D/wt. Developing tumors were indistinguishable from Trp53fl/fl:lsl-KRasG12D/wt-derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.}, language = {en} }