@article{RadeloffRamosTiradoHaddadetal.2021, author = {Radeloff, Katrin and Ramos Tirado, Mario and Haddad, Daniel and Breuer, Kathrin and M{\"u}ller, Jana and Hochmuth, Sabine and Hackenberg, Stephan and Scherzad, Agmal and Kleinsasser, Norbert and Radeloff, Andreas}, title = {Superparamagnetic iron oxide particles (VSOPs) show genotoxic effects but no functional impact on human adipose tissue-derived stromal cells (ASCs)}, series = {Materials}, volume = {14}, journal = {Materials}, number = {2}, issn = {1996-1944}, doi = {10.3390/ma14020263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222970}, year = {2021}, abstract = {Adipose tissue-derived stromal cells (ASCs) represent a capable source for cell-based therapeutic approaches. For monitoring a cell-based application in vivo, magnetic resonance imaging (MRI) of cells labeled with iron oxide particles is a common method. It is the aim of the present study to analyze potential DNA damage, cytotoxicity and impairment of functional properties of human (h)ASCs after labeling with citrate-coated very small superparamagnetic iron oxide particles (VSOPs). Cytotoxic as well as genotoxic effects of the labeling procedure were measured in labeled and unlabeled hASCs using the MTT assay, comet assay and chromosomal aberration test. Trilineage differentiation was performed to evaluate an impairment of the differentiation potential due to the particles. Proliferation as well as migration capability were analyzed after the labeling procedure. Furthermore, the labeling of the hASCs was confirmed by Prussian blue staining, transmission electron microscopy (TEM) and high-resolution MRI. Below the concentration of 0.6 mM, which was used for the procedure, no evidence of genotoxic effects was found. At 0.6 mM, 1 mM as well as 1.5 mM, an increase in the number of chromosomal aberrations was determined. Cytotoxic effects were not observed at any concentration. Proliferation, migration capability and differentiation potential were also not affected by the procedure. Labeling with VSOPs is a useful labeling method for hASCs that does not affect their proliferation, migration and differentiation potential. Despite the absence of cytotoxicity, however, indications of genotoxic effects have been demonstrated.}, language = {en} } @article{RadeloffRadeloffRamosTiradoetal.2020, author = {Radeloff, Katrin and Radeloff, Andreas and Ramos Tirado, Mario and Scherzad, Agmal and Hagen, Rudolf and Kleinsasser, Norbert H. and Hackenberg, Stephan}, title = {Toxicity and functional impairment in human adipose tissue-derived stromal cells (hASCs) following long-term exposure to very small iron oxide particles (VSOPs)}, series = {Nanomaterials}, volume = {10}, journal = {Nanomaterials}, number = {4}, issn = {2079-4991}, doi = {10.3390/nano10040741}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203676}, year = {2020}, abstract = {Magnetic nanoparticles (NPs), such as very small iron oxide NPs (VSOPs) can be used for targeted drug delivery, cancer treatment or tissue engineering. Another important field of application is the labelling of mesenchymal stem cells to allow in vivo tracking and visualization of transplanted cells using magnetic resonance imaging (MRI). For these NPs, however, various toxic effects, as well as functional impairment of the exposed cells, are described. The present study evaluates the influence of VSOPs on the multilineage differentiation ability and cytokine secretion of human adipose tissue derived stromal cells (hASCs) after long-term exposure. Human ASCs were labelled with VSOPs, and the efficacy of the labelling was documented over 4 weeks in vitro cultivation of the labelled cells. Unlabelled hASCs served as negative controls. Four weeks after labelling, adipogenic and osteogenic differentiation was histologically evaluated and quantified by polymerase chain reaction (PCR). Changes in gene expression of IL-6, IL-8, VEGF and caspase 3 were determined over 4 weeks. Four weeks after the labelling procedure, labelled and unlabelled hASCs did not differ in the gene expression of IL-6, IL-8, VEGF and caspase 3. Furthermore, the labelling procedure had no influence on the multidifferentiation ability of hASC. The percentage of labelled cells decreased during in vitro expansion over 4 weeks. Labelling with VSOPs and long-term intracellular disposition probably have no influence on the physiological functions of hASCs. This could be important for the future in vivo use of iron oxide NPs.}, language = {en} }