@article{SchilcherHilsmannRauscheretal.2021, author = {Schilcher, Felix and Hilsmann, Lioba and Rauscher, Lisa and Değirmenci, Laura and Krischke, Markus and Krischke, Beate and Ankenbrand, Markus and Rutschmann, Benjamin and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {In vitro rearing changes social task performance and physiology in honeybees}, series = {Insects}, volume = {13}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects13010004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252305}, year = {2021}, abstract = {In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.}, language = {en} } @article{SchilcherHilsmannAnkenbrandetal.2022, author = {Schilcher, Felix and Hilsmann, Lioba and Ankenbrand, Markus J. and Krischke, Markus and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {Honeybees are buffered against undernourishment during larval stages}, series = {Frontiers in Insect Science}, volume = {2}, journal = {Frontiers in Insect Science}, issn = {2673-8600}, doi = {10.3389/finsc.2022.951317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304646}, year = {2022}, abstract = {The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.}, language = {en} } @article{BlaettnerDasPaprotkaetal.2016, author = {Bl{\"a}ttner, Sebastian and Das, Sudip and Paprotka, Kerstin and Eilers, Ursula and Krischke, Markus and Kretschmer, Dorothee and Remmele, Christian W. and Dittrich, Marcus and M{\"u}ller, Tobias and Schuelein-Voelk, Christina and Hertlein, Tobias and Mueller, Martin J. and Huettel, Bruno and Reinhardt, Richard and Ohlsen, Knut and Rudel, Thomas and Fraunholz, Martin J.}, title = {Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1005857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180380}, year = {2016}, abstract = {Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.}, language = {en} } @phdthesis{Krischke2004, author = {Krischke, Markus}, title = {Oxidativer Stress in Pflanzen : Untersuchungen zum D1-Phytoprostan-Signalweg}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8599}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Phytoprostane (PP) k{\"o}nnen nichtenzymatisch in vitro und in vivo durch freie Radikal-katalysierte Peroxidation von alpha-Linolens{\"a}ure entstehen. In der vorliegenden Arbeit konnte gezeigt werden, dass {\"u}ber den D1-Phytoprostan-Weg zwei weitere Klassen von Phytoprostanen gebildet werden k{\"o}nnen, die D1-Phytoprostane (PPD1) und die Deoxy-J1-Phytoprostane (dPPJ1). PPD1 und dPPJ1 wurden erstmals durch Partialsynthese hergestellt. Zudem konnten diese Verbindungen durch Autoxidation von alpha-Linolens{\"a}ure gewonnen werden. PPD1 und dPPJ1 wurden chromatographisch aufgetrennt und UV-spektroskopisch und massenspektrometrisch charakterisiert. Zum Nachweis von PPD1 und dPPJ1 in planta wurde eine neuartige Analysenmethode mittels Fluoreszenz-HPLC entwickelt. Mit dieser Methode konnten PPD1 und dPPJ1 in drei unterschiedlichen Pflanzenspezies nachgewiesen werden. Zudem wurde eine verst{\"a}rkte Biosynthese von dPPJ1 in planta durch oxidativen Stress beobachtet, z.B. durch eine Belastung mit Schwermetallen oder einen kurzfristigen K{\"a}lteschock. Dar{\"u}ber hinaus konnte gezeigt werden, dass dPPJ1 sowohl in Pflanzen als auch in Tieren biologisch aktiv sind.}, language = {de} } @article{KarimiFreundWageretal.2021, author = {Karimi, Sohail M. and Freund, Matthias and Wager, Brittney M. and Knoblauch, Michael and Fromm, J{\"o}rg and M. Mueller, Heike and Ache, Peter and Krischke, Markus and Mueller, Martin J. and M{\"u}ller, Tobias and Dittrich, Marcus and Geilfus, Christoph-Martin and Alfaran, Ahmed H. and Hedrich, Rainer and Deeken, Rosalia}, title = {Under salt stress guard cells rewire ion transport and abscisic acid signaling}, series = {New Phytologist}, volume = {231}, journal = {New Phytologist}, number = {3}, doi = {10.1111/nph.17376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259635}, pages = {1040-1055}, year = {2021}, abstract = {Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.}, language = {en} } @article{KraussVikukYoungetal.2020, author = {Krauss, Jochen and Vikuk, Veronika and Young, Carolyn A. and Krischke, Markus and Mueller, Martin J. and Baerenfaller, Katja}, title = {Epichlo{\"e} endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe}, series = {Microorganisms}, volume = {8}, journal = {Microorganisms}, number = {4}, issn = {2076-2607}, doi = {10.3390/microorganisms8040498}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203323}, pages = {498}, year = {2020}, abstract = {Fungal endophytes of the genus Epichlo{\"e} live symbiotically in cool season grass species and can produce alkaloids toxic to insects and vertebrates, yet reports of intoxication of grazing animals have been rare in Europe in contrast to overseas. However, due to the beneficial resistance traits observed in Epichlo{\"e} infected grasses, the inclusion of Epichlo{\"e} in seed mixtures might become increasingly advantageous. Despite the toxicity of fungal alkaloids, European seed mixtures are rarely tested for Epichlo{\"e} infection and their infection status is unknown for consumers. In this study, we tested 24 commercially available seed mixtures for their infection rates with Epichlo{\"e} endophytes and measured the concentrations of the alkaloids ergovaline, lolitrem B, paxilline, and peramine. We detected Epichlo{\"e} infections in six seed mixtures, and four contained vertebrate and insect toxic alkaloids typical for Epichlo{\"e} festucae var. lolii infecting Lolium perenne. As Epichlo{\"e} infected seed mixtures can harm livestock, when infected grasses become dominant in the seeded grasslands, we recommend seed producers to test and communicate Epichlo{\"e} infection status or avoiding Epichlo{\"e} infected seed mixtures.}, language = {en} } @article{ElmaidomyMohammedHassanetal.2019, author = {Elmaidomy, Abeer H. and Mohammed, Rabab and Hassan, Hossam M. and Owis, Asmaa I. and Rateb, Mostafa E. and Khanfar, Mohammad A. and Krischke, Markus and Mueller, Martin J. and Abdelmohsen, Usama Ramadan}, title = {Metabolomic profiling and cytotoxic tetrahydrofurofuran lignans investigations from Premna odorata Blanco}, series = {Metabolites}, volume = {9}, journal = {Metabolites}, number = {10}, issn = {2218-1989}, doi = {10.3390/metabo9100223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193187}, pages = {223}, year = {2019}, abstract = {Metabolomic profiling of different Premna odorata Blanco (Lamiaceae) organs, bark, wood, young stems, flowers, and fruits dereplicated 20, 20, 10, 20, and 20 compounds, respectively, using LC-HRESIMS. The identified metabolites (1-34) belonged to different chemical classes, including iridoids, flavones, phenyl ethanoids, and lignans. A phytochemical investigation of P. odorata bark afforded one new tetrahydrofurofuran lignan, 4β-hydroxyasarinin 35, along with fourteen known compounds. The structure of the new compound was confirmed using extensive 1D and 2D NMR, and HRESIMS analyses. A cytotoxic investigation of compounds 35-38 against the HL-60, HT-29, and MCF-7 cancer cell lines, using the MTT assay showed that compound 35 had cytotoxic effects against HL-60 and MCF-7 with IC50 values of 2.7 and 4.2 µg/mL, respectively. A pharmacophore map of compounds 35 showed two hydrogen bond acceptor (HBA) aligning the phenoxy oxygen atoms of benzodioxole moieties, two aromatic ring features vectored on the two phenyl rings, one hydrogen bond donor (HBD) feature aligning the central hydroxyl group and thirteen exclusion spheres which limit the boundaries of sterically inaccessible regions of the target's active site.}, language = {en} } @article{GrausLiRathjeetal.2023, author = {Graus, Dorothea and Li, Kunkun and Rathje, Jan M. and Ding, Meiqi and Krischke, Markus and M{\"u}ller, Martin J. and Cuin, Tracey Ann and Al-Rasheid, Khaled A. S. and Scherzer, S{\"o}nke and Marten, Irene and Konrad, Kai R. and Hedrich, Rainer}, title = {Tobacco leaf tissue rapidly detoxifies direct salt loads without activation of calcium and SOS signaling}, series = {New Phytologist}, volume = {237}, journal = {New Phytologist}, number = {1}, doi = {10.1111/nph.18501}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312152}, pages = {217 -- 231}, year = {2023}, abstract = {Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca\(^{2+}\)) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H\(^{+}\)) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H\(^{+}\)/Na\(^{+}\)-exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na\(^{+}\)) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca\(^{2+}\) signaling.}, language = {en} } @article{KraussVikukYoungetal.2020, author = {Krauss, Jochen and Vikuk, Veronika and Young, Carolyn A. and Krischke, Markus and Mueller, Martin J. and Baerenfaller, Katja}, title = {Correction: Krauss, J., et al. Epichlo{\"e} endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe. Microorganisms 2020, 8, 498}, series = {Microorganisms}, volume = {8}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms8101616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216254}, year = {2020}, abstract = {No abstract available.}, language = {en} } @article{ThurowKrischkeMuelleretal.2020, author = {Thurow, Corinna and Krischke, Markus and Mueller, Martin J. and Gatz, Christiane}, title = {Induction of jasmonoyl-isoleucine (JA-Ile)-dependent JASMONATE ZIM-DOMAIN (JAZ) genes in NaCl-treated Arabidopsis thaliana roots can occur at very low JA-Ile levels and in the absence of the JA/JA-Ile transporter JAT1/AtABCG16}, series = {Plants}, volume = {9}, journal = {Plants}, number = {12}, issn = {2223-7747}, doi = {10.3390/plants9121635}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219382}, year = {2020}, abstract = {The plant hormone jasmonoyl-isoleucine (JA-Ile) is an important regulator of plant growth and defense in response to various biotic and abiotic stress cues. Under our experimental conditions, JA-Ile levels increased approximately seven-fold in NaCl-treated Arabidopsis thaliana roots. Although these levels were around 1000-fold lower than in wounded leaves, genes of the JA-Ile signaling pathway were induced by a factor of 100 or more. Induction was severely compromised in plants lacking the JA-Ile receptor CORONATINE INSENSITIVE 1 or enzymes required for JA-Ile biosynthesis. To explain efficient gene expression at very low JA-Ile levels, we hypothesized that salt-induced expression of the JA/JA-Ile transporter JAT1/AtABCG16 would lead to increased nuclear levels of JA-Ile. However, mutant plants with different jat1 alleles were similar to wild-type ones with respect to salt-induced gene expression. The mechanism that allows COI1-dependent gene expression at very low JA-Ile levels remains to be elucidated.}, language = {en} } @article{YoussifHaggagElshamyetal.2019, author = {Youssif, Khayrya A. and Haggag, Eman G. and Elshamy, Ali M. and Rabeh, Mohamed A. and Gabr, Nagwan M. and Seleem, Amany and Salem, M. Alaraby and Hussein, Ahmed S. and Krischke, Markus and Mueller, Martin J. and Ramadan Abdelmohsen, Usama}, title = {Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0223781}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202696}, pages = {e0223781}, year = {2019}, abstract = {The green synthesis of silver nanoparticles (SNPs) using plant extracts is an eco-friendly method. It is a single step and offers several advantages such as time reducing, cost-effective and environmental non-toxic. Silver nanoparticles are a type of Noble metal nanoparticles and it has tremendous applications in the field of diagnostics, therapeutics, antimicrobial activity, anticancer and neurodegenerative diseases. In the present work, the aqueous extracts of aerial parts of Lampranthus coccineus and Malephora lutea F. Aizoaceae were successfully used for the synthesis of silver nanoparticles. The formation of silver nanoparticles was early detected by a color change from pale yellow to reddish-brown color and was further confirmed by transmission electron microscope (TEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and energy-dispersive X-ray diffraction (EDX). The TEM analysis of showed spherical nanoparticles with a mean size between 12.86 nm and 28.19 nm and the UV- visible spectroscopy showed λ\(_{max}\) of 417 nm, which confirms the presence of nanoparticles. The neuroprotective potential of SNPs was evaluated by assessing the antioxidant and cholinesterase inhibitory activity. Metabolomic profiling was performed on methanolic extracts of L. coccineus and M. lutea and resulted in the identification of 12 compounds, then docking was performed to investigate the possible interaction between the identified compounds and human acetylcholinesterase, butyrylcholinesterase, and glutathione transferase receptor, which are associated with the progress of Alzheimer's disease. Overall our SNPs highlighted its promising potential in terms of anticholinesterase and antioxidant activity as plant-based anti-Alzheimer drug and against oxidative stress.}, language = {en} } @article{VikukFuchsKrischkeetal.2020, author = {Vikuk, Veronika and Fuchs, Benjamin and Krischke, Markus and Mueller, Martin J. and Rueb, Selina and Krauss, Jochen}, title = {Alkaloid Concentrations of Lolium perenne Infected with Epichlo{\"e} festucae var. lolii with Different Detection Methods—A Re-Evaluation of Intoxication Risk in Germany?}, series = {Journal of Fungi}, volume = {6}, journal = {Journal of Fungi}, number = {3}, issn = {2309-608X}, doi = {10.3390/jof6030177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213171}, year = {2020}, abstract = {Mycotoxins in agriculturally used plants can cause intoxication in animals and can lead to severe financial losses for farmers. The endophytic fungus Epichlo{\"e} festucae var. lolii living symbiotically within the cool season grass species Lolium perenne can produce vertebrate and invertebrate toxic alkaloids. Hence, an exact quantitation of alkaloid concentrations is essential to determine intoxication risk for animals. Many studies use different methods to detect alkaloid concentrations, which complicates the comparability. In this study, we showed that alkaloid concentrations of individual plants exceeded toxicity thresholds on real world grasslands in Germany, but not on the population level. Alkaloid concentrations on five German grasslands with high alkaloid levels peaked in summer but were also below toxicity thresholds on population level. Furthermore, we showed that alkaloid concentrations follow the same seasonal trend, regardless of whether plant fresh or dry weight was used, in the field and in a common garden study. However, alkaloid concentrations were around three times higher when detected with dry weight. Finally, we showed that alkaloid concentrations can additionally be biased to different alkaloid detection methods. We highlight that toxicity risks should be analyzed using plant dry weight, but concentration trends of fresh weight are reliable.}, language = {en} } @article{AbdelhafezFawzyFahimetal.2018, author = {Abdelhafez, Omnia Hesham and Fawzy, Michael Atef and Fahim, John Refaat and Desoukey, Samar Yehia and Krischke, Markus and Mueller, Martin J. and Abdelmohsen, Usama Ramadan}, title = {Hepatoprotective potential of Malvaviscus arboreus against carbon tetrachloride-induced liver injury in rats}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0202362}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177243}, pages = {e0202362}, year = {2018}, abstract = {Malvaviscus arboreus Cav. is a medicinal plant belonging to family Malvaceae with both ethnomedical and culinary value; however, its phytochemical and biological profiles have been scarcely studied. Accordingly, this work was designed to explore the chemical composition and the hepatoprotective potential of M. arboreus against carbon tetrachloride (CCl\(_4\))-induced hepatotoxicity. The total extract of the aerial parts and its derived fractions (petroleum ether, dichloromethane, ethyl acetate, and aqueous) were orally administered to rats for six consecutive days, followed by injection of CCl\(_4\) (1:1 v/v, in olive oil, 1.5 ml/kg, i.p.) on the next day. Results showed that the ethyl acetate and dichloromethane fractions significantly alleviated liver injury in rats as indicated by the reduced levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bilirubin (TB), and malondialdehyde (MDA), along with enhancement of the total antioxidant capacities of their livers, with the maximum effects were recorded by the ethyl acetate fraction. Moreover, the protective actions of both fractions were comparable to those of silymarin (100 mg/kg), and have been also substantiated by histopathological evaluations. On the other hand, liquid chromatography-high resolution electrospray ionization mass spectrometry (LC‒HR‒ESI‒MS) metabolomic profiling of the crude extract of M. arboreus aerial parts showed the presence of a variety of phytochemicals, mostly phenolics, whereas the detailed chemical analysis of the most active fraction (i.e. ethyl acetate) resulted in the isolation and identification of six compounds for the first time in the genus, comprising four phenolic acids; β-resorcylic, caffeic, protocatechuic, and 4-hydroxyphenylacetic acids, in addition to two flavonoids; trifolin and astragalin. Such phenolic principles, together with their probable synergistic antioxidant and liver-protecting properties, seem to contribute to the observed hepatoprotective potential of M. arboreus.}, language = {en} } @article{SteinerZacharyBaueretal.2023, author = {Steiner, Thomas and Zachary, Marie and Bauer, Susanne and M{\"u}ller, Martin J. and Krischke, Markus and Radziej, Sandra and Klepsch, Maximilian and Huettel, Bruno and Eisenreich, Wolfgang and Rudel, Thomas and Beier, Dagmar}, title = {Central Role of Sibling Small RNAs NgncR_162 and NgncR_163 in Main Metabolic Pathways of Neisseria gonorrhoeae}, series = {mBio}, volume = {14}, journal = {mBio}, doi = {10.1128/mbio.03093-22}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313323}, year = {2023}, abstract = {Small bacterial regulatory RNAs (sRNAs) have been implicated in the regulation of numerous metabolic pathways. In most of these studies, sRNA-dependent regulation of mRNAs or proteins of enzymes in metabolic pathways has been predicted to affect the metabolism of these bacteria. However, only in a very few cases has the role in metabolism been demonstrated. Here, we performed a combined transcriptome and metabolome analysis to define the regulon of the sibling sRNAs NgncR_162 and NgncR_163 (NgncR_162/163) and their impact on the metabolism of Neisseria gonorrhoeae. These sRNAs have been reported to control genes of the citric acid and methylcitric acid cycles by posttranscriptional negative regulation. By transcriptome analysis, we now expand the NgncR_162/163 regulon by several new members and provide evidence that the sibling sRNAs act as both negative and positive regulators of target gene expression. Newly identified NgncR_162/163 targets are mostly involved in transport processes, especially in the uptake of glycine, phenylalanine, and branched-chain amino acids. NgncR_162/163 also play key roles in the control of serine-glycine metabolism and, hence, probably affect biosyntheses of nucleotides, vitamins, and other amino acids via the supply of one-carbon (C\(_1\)) units. Indeed, these roles were confirmed by metabolomics and metabolic flux analysis, which revealed a bipartite metabolic network with glucose degradation for the supply of anabolic pathways and the usage of amino acids via the citric acid cycle for energy metabolism. Thus, by combined deep RNA sequencing (RNA-seq) and metabolomics, we significantly extended the regulon of NgncR_162/163 and demonstrated the role of NgncR_162/163 in the regulation of central metabolic pathways of the gonococcus.}, language = {en} } @article{FerberGerhardsSaueretal.2020, author = {Ferber, Elena and Gerhards, Julian and Sauer, Miriam and Krischke, Markus and Dittrich, Marcus T. and M{\"u}ller, Tobias and Berger, Susanne and Fekete, Agnes and Mueller, Martin J.}, title = {Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb}, series = {Frontiers in Plant Science}, volume = {11}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2020.00887}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207104}, year = {2020}, abstract = {In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms.}, language = {en} } @article{LambourGlenzForneretal.2022, author = {Lambour, Benjamin and Glenz, Ren{\´e} and Forner, Carmen and Krischke, Markus and Mueller, Martin J. and Fekete, Agnes and Waller, Frank}, title = {Sphingolipid long-chain base phosphate degradation can be a rate-limiting step in long-chain base homeostasis}, series = {Frontiers in Plant Science}, volume = {13}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2022.911073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277679}, year = {2022}, abstract = {Sphingolipid long-chain bases (LCBs) are building blocks for membrane-localized sphingolipids, and are involved in signal transduction pathways in plants. Elevated LCB levels are associated with the induction of programmed cell death and pathogen-derived toxin-induced cell death. Therefore, levels of free LCBs can determine survival of plant cells. To elucidate the contribution of metabolic pathways regulating high LCB levels, we applied the deuterium-labeled LCB D-erythro-sphinganine-d7 (D7-d18:0), the first LCB in sphingolipid biosynthesis, to Arabidopsis leaves and quantified labeled LCBs, LCB phosphates (LCB-Ps), and 14 abundant ceramide (Cer) species over time. We show that LCB D7-d18:0 is rapidly converted into the LCBs d18:0P, t18:0, and t18:0P. Deuterium-labeled ceramides were less abundant, but increased over time, with the highest levels detected for Cer(d18:0/16:0), Cer(d18:0/24:0), Cer(t18:0/16:0), and Cer(t18:0/22:0). A more than 50-fold increase of LCB-P levels after leaf incubation in LCB D7-d18:0 indicated that degradation of LCBs via LCB-Ps is important, and we hypothesized that LCB-P degradation could be a rate-limiting step to reduce high levels of LCBs. To functionally test this hypothesis, we constructed a transgenic line with dihydrosphingosine-1-phosphate lyase 1 (DPL1) under control of an inducible promotor. Higher expression of DPL1 significantly reduced elevated LCB-P and LCB levels induced by Fumonisin B1, and rendered plants more resistant against this fungal toxin. Taken together, we provide quantitative data on the contribution of major enzymatic pathways to reduce high LCB levels, which can trigger cell death. Specifically, we provide functional evidence that DPL1 can be a rate-limiting step in regulating high LCB levels.}, language = {en} } @article{ThomasFiebigKuhnetal.2023, author = {Thomas, Sarah and Fiebig, Juliane E. and Kuhn, Eva-Maria and Mayer, Dominik S. and Filbeck, Sebastian and Schmitz, Werner and Krischke, Markus and Gropp, Roswitha and Mueller, Thomas D.}, title = {Design of glycoengineered IL-4 antagonists employing chemical and biosynthetic glycosylation}, series = {ACS Omega}, volume = {8}, journal = {ACS Omega}, number = {28}, issn = {2470-1343}, doi = {10.1021/acsomega.3c00726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350278}, pages = {24841-24852}, year = {2023}, abstract = {Interleukin-4 (IL-4) plays a key role in atopic diseases. It coordinates T-helper cell differentiation to subtype 2, thereby directing defense toward humoral immunity. Together with Interleukin-13, IL-4 further induces immunoglobulin class switch to IgE. Antibodies of this type activate mast cells and basophilic and eosinophilic granulocytes, which release pro-inflammatory mediators accounting for the typical symptoms of atopic diseases. IL-4 and IL-13 are thus major targets for pharmaceutical intervention strategies to treat atopic diseases. Besides neutralizing antibodies against IL-4, IL-13, or its receptors, IL-4 antagonists can present valuable alternatives. Pitrakinra, an Escherichia coli-derived IL-4 antagonist, has been evaluated in clinical trials for asthma treatment in the past; however, deficits such as short serum lifetime and potential immunogenicity among others stopped further development. To overcome such deficits, PEGylation of therapeutically important proteins has been used to increase the lifetime and proteolytic stability. As an alternative, glycoengineering is an emerging strategy used to improve pharmacokinetics of protein therapeutics. In this study, we have established different strategies to attach glycan moieties to defined positions in IL-4. Different chemical attachment strategies employing thiol chemistry were used to attach a glucose molecule at amino acid position 121, thereby converting IL-4 into a highly effective antagonist. To enhance the proteolytic stability of this IL-4 antagonist, additional glycan structures were introduced by glycoengineering utilizing eucaryotic expression. IL-4 antagonists with a combination of chemical and biosynthetic glycoengineering could be useful as therapeutic alternatives to IL-4 neutralizing antibodies already used to treat atopic diseases.}, language = {en} }