@article{KopfDreslerReichertsetal.2013, author = {Kopf, Juliane and Dresler, Thomas and Reicherts, Philipp and Herrmann, Martin J. and Reif, Andreas}, title = {The Effect of Emotional Content on Brain Activation and the Late Positive Potential in a Word n-back Task}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96687}, year = {2013}, abstract = {Introduction There is mounting evidence for the influence of emotional content on working memory performance. This is particularly important in light of the emotion processing that needs to take place when emotional content interferes with executive functions. In this study, we used emotional words of different valence but with similar arousal levels in an n-back task. Methods We examined the effects on activation in the prefrontal cortex by means of functional near-infrared spectroscopy (fNIRS) and on the late positive potential (LPP). FNIRS and LPP data were examined in 30 healthy subjects. Results Behavioral results show an influence of valence on the error rate depending on the difficulty of the task: more errors were made when the valence was negative and the task difficult. Brain activation was dependent both on the difficulty of the task and on the valence: negative valence of a word diminished the increase in activation, whereas positive valence did not influence the increase in activation, while difficulty levels increased. The LPP also differentiated between the different valences, and in addition was influenced by the task difficulty, the more difficult the task, the less differentiation could be observed. Conclusions Summarized, this study shows the influence of valence on a verbal working memory task. When a word contained a negative valence, the emotional content seemed to take precedence in contrast to words containing a positive valence. Working memory and emotion processing sites seemed to overlap and compete for resources even when words are carriers of the emotional content.}, language = {en} } @article{BiehlEhlisMuelleretal.2013, author = {Biehl, Stefanie C. and Ehlis, Ann-Christine and M{\"u}ller, Laura D. and Niklaus, Andrea and Pauli, Paul and Herrmann, Martin J.}, title = {The impact of task relevance and degree of distraction on stimulus processing}, series = {BMC Neuroscience}, journal = {BMC Neuroscience}, doi = {10.1186/1471-2202-14-107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97271}, year = {2013}, abstract = {Background The impact of task relevance on event-related potential amplitudes of early visual processing was previously demonstrated. Study designs, however, differ greatly, not allowing simultaneous investigation of how both degree of distraction and task relevance influence processing variations. In our study, we combined different features of previous tasks. We used a modified 1-back task in which task relevant and task irrelevant stimuli were alternately presented. The task irrelevant stimuli could be from the same or from a different category as the task relevant stimuli, thereby producing high and low distracting task irrelevant stimuli. In addition, the paradigm comprised a passive viewing condition. Thus, our paradigm enabled us to compare the processing of task relevant stimuli, task irrelevant stimuli with differing degrees of distraction, and passively viewed stimuli. EEG data from twenty participants was collected and mean P100 and N170 amplitudes were analyzed. Furthermore, a potential connection of stimulus processing and symptoms of attention deficit hyperactivity disorder (ADHD) was investigated. Results Our results show a modulation of peak N170 amplitudes by task relevance. N170 amplitudes to task relevant stimuli were significantly higher than to high distracting task irrelevant or passively viewed stimuli. In addition, amplitudes to low distracting task irrelevant stimuli were significantly higher than to high distracting stimuli. N170 amplitudes to passively viewed stimuli were not significantly different from either kind of task irrelevant stimuli. Participants with more symptoms of hyperactivity and impulsivity showed decreased N170 amplitudes across all task conditions. On a behavioral level, lower N170 enhancement efficiency was significantly correlated with false alarm responses. Conclusions Our results point to a processing enhancement of task relevant stimuli. Unlike P100 amplitudes, N170 amplitudes were strongly influenced by enhancement and enhancement efficiency seemed to have direct behavioral consequences. These findings have potential implications for models of clinical disorders affecting selective attention, especially ADHD.}, language = {en} } @article{ManishNueckelMuehlbergeretal.2013, author = {Manish, Asthana and Nueckel, Katharina and M{\"u}hlberger, Andreas and Neueder, Dorothea and Polak, Thomas and Domschke, Katharina and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Effects of transcranial direct current stimulation on consolidation of fear memory}, series = {Frontiers in Neuropsychiatric Imaging and Stimulation}, journal = {Frontiers in Neuropsychiatric Imaging and Stimulation}, doi = {10.3389/fpsyt.2013.00107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97294}, year = {2013}, abstract = {It has been shown that applying transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) influences declarative memory processes. This study investigates the efficacy of tDCS on emotional memory consolidation, especially experimental fear conditioning. We applied an auditory fear-conditioning paradigm, in which two differently colored squares (blue and yellow) were presented as conditioned stimuli (CS) and an auditory stimulus as unconditioned stimulus (UCS). Sixty-nine participants were randomly assigned into three groups: anodal, cathodal, and sham stimulation. The participants of the two active groups (i.e., anodal and cathodal) received tDCS over the left DLPFC for 12 min after fear conditioning. The effect of fear conditioning and consolidation (24 h later) was measured by assessing the skin conductance response (SCR) to the CS. The results provide evidence that cathodal stimulation of the left DLPFC leads to an inhibitory effect on fear memory consolidation compared to anodal and sham stimulation, as indicated by decreased SCRs to CS+ presentation during extinction training at day 2. In conclusion, current work suggests that cathodal stimulation interferes with processes of fear memory consolidation.}, language = {en} } @article{TuchscherrBischoffLattaretal.2015, author = {Tuchscherr, Lorena and Bischoff, Markus and Lattar, Santiago M. and Noto Llana, Mariangeles and Pf{\"o}rtner, Henrike and Niemann, Silke and Geraci, Jennifer and Van de Vyver, H{\´e}l{\`e}ne and Fraunholz, Martin J. and Cheung, Ambrose L. and Herrmann, Mathias and V{\"o}lker, Uwe and Sordelli, Daniel O. and Peters, Georg and Loeffler, Bettina}, title = {Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections}, series = {PLoS Pathogens}, volume = {11}, journal = {PLoS Pathogens}, number = {4}, doi = {10.1371/journal.ppat.1004870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143419}, pages = {e1004870}, year = {2015}, abstract = {Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, \(\Delta\)sigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections.}, language = {en} } @article{BellingerWehrmannRohdeetal.2023, author = {Bellinger, Daniel and Wehrmann, Kristin and Rohde, Anna and Schuppert, Maria and St{\"o}rk, Stefan and Flohr-Jost, Michael and Gall, Dominik and Pauli, Paul and Deckert, J{\"u}rgen and Herrmann, Martin J. and Erhardt-Lehmann, Angelika}, title = {The application of virtual reality exposure versus relaxation training in music performance anxiety: a randomized controlled study}, series = {BMC Psychiatry}, volume = {23}, journal = {BMC Psychiatry}, doi = {10.1186/s12888-023-05040-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357833}, year = {2023}, abstract = {Background Performance anxiety is the most frequently reported anxiety disorder among professional musicians. Typical symptoms are - on a physical level - the consequences of an increase in sympathetic tone with cardiac stress, such as acceleration of heartbeat, increase in blood pressure, increased respiratory rate and tremor up to nausea or flush reactions. These symptoms can cause emotional distress, a reduced musical and artistical performance up to an impaired functioning. While anxiety disorders are preferably treated using cognitive-behavioral therapy with exposure, this approach is rather difficult for treating music performance anxiety since the presence of a public or professional jury is required and not easily available. The use of virtual reality (VR) could therefore display an alternative. So far, no therapy studies on music performance anxiety applying virtual reality exposure therapy have investigated the therapy outcome including cardiovascular changes as outcome parameters. Methods This mono-center, prospective, randomized and controlled clinical trial has a pre-post design with a follow-up period of 6 months. 46 professional and semi-professional musicians will be recruited and allocated randomly to an VR exposure group or a control group receiving progressive muscle relaxation training. Both groups will be treated over 4 single sessions. Music performance anxiety will be diagnosed based on a clinical interview using ICD-10 and DSM-5 criteria for specific phobia or social anxiety. A behavioral assessment test is conducted three times (pre, post, follow-up) in VR through an audition in a concert hall. Primary outcomes are the changes in music performance anxiety measured by the German B{\"u}hnenangstfragebogen and the cardiovascular reactivity reflected by heart rate variability (HRV). Secondary outcomes are changes in blood pressure, stress parameters such as cortisol in the blood and saliva, neuropeptides, and DNA-methylation. Discussion The trial investigates the effect of VR exposure in musicians with performance anxiety compared to a relaxation technique on anxiety symptoms and corresponding cardiovascular parameters. We expect a reduction of anxiety but also a consecutive improvement of HRV with cardiovascular protective effects. Trial registration This study was registered on clinicaltrials.gov. (ClinicalTrials.gov Number: NCT05735860)}, language = {en} } @article{QiBruchKropetal.2021, author = {Qi, Yanyan and Bruch, Dorothee and Krop, Philipp and Herrmann, Martin J. and Latoschik, Marc E. and Deckert, J{\"u}rgen and Hein, Grit}, title = {Social buffering of human fear is shaped by gender, social concern, and the presence of real vs virtual agents}, series = {Translational Psychiatry}, volume = {11}, journal = {Translational Psychiatry}, doi = {10.1038/s41398-021-01761-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265782}, year = {2021}, abstract = {The presence of a partner can attenuate physiological fear responses, a phenomenon known as social buffering. However, not all individuals are equally sociable. Here we investigated whether social buffering of fear is shaped by sensitivity to social anxiety (social concern) and whether these effects are different in females and males. We collected skin conductance responses (SCRs) and affect ratings of female and male participants when they experienced aversive and neutral sounds alone (alone treatment) or in the presence of an unknown person of the same gender (social treatment). Individual differences in social concern were assessed based on a well-established questionnaire. Our results showed that social concern had a stronger effect on social buffering in females than in males. The lower females scored on social concern, the stronger the SCRs reduction in the social compared to the alone treatment. The effect of social concern on social buffering of fear in females disappeared if participants were paired with a virtual agent instead of a real person. Together, these results showed that social buffering of human fear is shaped by gender and social concern. In females, the presence of virtual agents can buffer fear, irrespective of individual differences in social concern. These findings specify factors that shape the social modulation of human fear, and thus might be relevant for the treatment of anxiety disorders.}, language = {en} } @article{SchieleZieglerKollertetal.2018, author = {Schiele, Miriam A. and Ziegler, Christiane and Kollert, Leonie and Katzorke, Andrea and Schartner, Christoph and Busch, Yasmin and Gromer, Daniel and Reif, Andreas and Pauli, Paul and Deckert, J{\"u}rgen and Herrmann, Martin J. and Domschke, Katharina}, title = {Plasticity of Functional MAOA Gene Methylation in Acrophobia}, series = {International Journal of Neuropsychopharmacology}, volume = {21}, journal = {International Journal of Neuropsychopharmacology}, number = {9}, doi = {10.1093/ijnp/pyy050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228571}, pages = {822-827}, year = {2018}, abstract = {Epigenetic mechanisms have been proposed to mediate fear extinction in animal models. Here, MAOA methylation was analyzed via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells before and after a 2-week exposure therapy in a sample of n = 28 female patients with acrophobia as well as in n = 28 matched healthy female controls. Clinical response was measured using the Acrophobia Questionnaire and the Attitude Towards Heights Questionnaire. The functional relevance of altered MAOA methylation was investigated by luciferase-based reporter gene assays. MAOA methylation was found to be significantly decreased in patients with acrophobia compared with healthy controls. Furthermore, MAOA methylation levels were shown to significantly increase after treatment and correlate with treatment response as reflected by decreasing Acrophobia Questionnaire/Attitude Towards Heights Questionnaire scores. Functional analyses revealed decreased reporter gene activity in presence of methylated compared with unmethylated pCpGfree_MAOA reporter gene vector constructs. The present proof-of-concept psychotherapy-epigenetic study for the first time suggests functional MAOA methylation changes as a potential epigenetic correlate of treatment response in acrophobia and fosters further investigation into the notion of epigenetic mechanisms underlying fear extinction.}, language = {en} } @article{BuffBrinkmannBruchmannetal.2017, author = {Buff, Christine and Brinkmann, Leonie and Bruchmann, Maximilian and Becker, Michael P.I. and Tupak, Sara and Herrmann, Martin J. and Straube, Thomas}, title = {Activity alterations in the bed nucleus of the stria terminalis and amygdala during threat anticipation in generalized anxiety disorder}, series = {Social Cognitive and Affective Neuroscience}, volume = {12}, journal = {Social Cognitive and Affective Neuroscience}, number = {11}, doi = {10.1093/scan/nsx103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173298}, pages = {1766-1774}, year = {2017}, abstract = {Sustained anticipatory anxiety is central to Generalized Anxiety Disorder (GAD). During anticipatory anxiety, phasic threat responding appears to be mediated by the amygdala, while sustained threat responding seems related to the bed nucleus of the stria terminalis (BNST). Although sustained anticipatory anxiety in GAD patients was proposed to be associated with BNST activity alterations, firm evidence is lacking. We aimed to explore temporal characteristics of BNST and amygdala activity during threat anticipation in GAD patients. Nineteen GAD patients and nineteen healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during a temporally unpredictable threat anticipation paradigm. We defined phasic and a systematic variation of sustained response models for blood oxygen level-dependent responses during threat anticipation, to disentangle temporally dissociable involvement of the BNST and the amygdala. GAD patients relative to HC responded with increased phasic amygdala activity to onset of threat anticipation and with elevated sustained BNST activity that was delayed relative to the onset of threat anticipation. Both the amygdala and the BNST displayed altered responses during threat anticipation in GAD patients, albeit with different time courses. The results for the BNST activation hint towards its role in sustained threat responding, and contribute to a deeper understanding of pathological sustained anticipatory anxiety in GAD.}, language = {en} } @article{HerrmannMuellerOrthetal.2020, author = {Herrmann, Andreas B. and M{\"u}ller, Martha-Lena and Orth, Martin F. and M{\"u}ller, J{\"o}rg P. and Zernecke, Alma and Hochhaus, Andreas and Ernst, Thomas and Butt, Elke and Frietsch, Jochen J.}, title = {Knockout of LASP1 in CXCR4 expressing CML cells promotes cell persistence, proliferation and TKI resistance}, series = {Journal of Cellular and Molecular Medicine}, volume = {24}, journal = {Journal of Cellular and Molecular Medicine}, number = {5}, doi = {10.1111/jcmm.14910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214122}, pages = {2942 -- 2955}, year = {2020}, abstract = {Chronic myeloid leukaemia (CML) is a clonal myeloproliferative stem cell disorder characterized by the constitutively active BCR-ABL tyrosine kinase. The LIM and SH3 domain protein 1 (LASP1) has recently been identified as a novel BCR-ABL substrate and is associated with proliferation, migration, tumorigenesis and chemoresistance in several cancers. Furthermore, LASP1 was shown to bind to the chemokine receptor 4 (CXCR4), thought to be involved in mechanisms of relapse. In order to identify potential LASP1-mediated pathways and related factors that may help to further eradicate minimal residual disease (MRD), the effect of LASP1 on processes involved in progression and maintenance of CML was investigated. The present data indicate that not only overexpression of CXCR4, but also knockout of LASP1 contributes to proliferation, reduced apoptosis and migration as well as increased adhesive potential of K562 CML cells. Furthermore, LASP1 depletion in K562 CML cells leads to decreased cytokine release and reduced NK cell-mediated cytotoxicity towards CML cells. Taken together, these results indicate that in CML, reduced levels of LASP1 alone and in combination with high CXCR4 expression may contribute to TKI resistance.}, language = {en} } @article{AsthanaBrunhuberMuehlbergeretal.2016, author = {Asthana, Manish Kumar and Brunhuber, Bettina and M{\"u}hlberger, Andreas and Reif, Andreas and Schneider, Simone and Herrmann, Martin J.}, title = {Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {6}, doi = {10.1093/ijnp/pyv137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166217}, year = {2016}, abstract = {Background: Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. Methods: An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. Results: The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Conclusions: Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans.}, language = {en} }