@article{HaarmannNehenDeissetal.2015, author = {Haarmann, Axel and Nehen, Mathias and Deiß, Annika and Buttmann, Mathias}, title = {Fumaric acid esters do not reduce inflammatory NF-\(\kappa\)B/p65 nuclear translocation, ICAM-1 expression and T-cell adhesiveness of human brain microvascular endothelial cells}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160819086}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148295}, pages = {19086-19095}, year = {2015}, abstract = {Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 \(\mu\)M blocked the IL-1\(\beta\)-induced nuclear translocation of NF-\(\kappa\)B/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1\(\beta\)-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1\(\beta\)-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.}, language = {en} } @article{SadovnickTraboulseeBernalesetal.2016, author = {Sadovnick, A. Dessa and Traboulsee, Anthony L. and Bernales, Cecily Q. and Ross, Jay P. and Forwell, Amanda L. and Yee, Irene M. and Guillot-Noel, Lena and Fontaine, Bertrand and Cournu-Rebeix, Isabelle and Alcina, Antonio and Fedetz, Maria and Izquierdo, Guillermo and Matesanz, Fuencisla and Hilven, Kelly and Dubois, B{\´e}n{\´e}dicte and Goris, An and Astobiza, Ianire and Alloza, Iraide and Antig{\"u}edad, Alfredo and Vandenbroeck, Koen and Akkad, Denis A. and Aktas, Orhan and Blaschke, Paul and Buttmann, Mathias and Chan, Andrew and Epplen, Joerg T. and Gerdes, Lisa-Ann and Kroner, Antje and Kubisch, Christian and K{\"u}mpfel, Tania and Lohse, Peter and Rieckmann, Peter and Zettl, Uwe K. and Zipp, Frauke and Bertram, Lars and Lill, Christina M. and Fernandez, Oscar and Urbaneja, Patricia and Leyva, Laura and Alvarez-Cerme{\~n}o, Jose Carlos and Arroyo, Rafael and Garagorri, Aroa M. and Garc{\´i}a-Mart{\´i}nez, Angel and Villar, Luisa M. and Urcelay, Elena and Malhotra, Sunny and Montalban, Xavier and Comabella, Manuel and Berger, Thomas and Fazekas, Franz and Reindl, Markus and Schmied, Mascha C. and Zimprich, Alexander and Vilari{\~n}o-G{\"u}ell, Carles}, title = {Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients}, series = {G3: Genes Genomes Genetics}, volume = {6}, journal = {G3: Genes Genomes Genetics}, number = {7}, doi = {10.1534/g3.116.030841}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165405}, pages = {2073-2079}, year = {2016}, abstract = {Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95\% CI = 0.93-1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility.}, language = {en} } @article{GomezFernandezLopezdeLapuentePortillaAstobizaetal.2020, author = {G{\´o}mez-Fern{\´a}ndez, Paloma and Lopez de Lapuente Portilla, Aitzkoa and Astobiza, Ianire and Mena, Jorge and Urtasun, Andoni and Altmann, Vivian and Matesanz, Fuencisla and Otaegui, David and Urcelay, Elena and Antig{\"u}edad, Alfredo and Malhotra, Sunny and Montalban, Xavier and Castillo-Trivi{\~n}o, Tamara and Espino-Pais{\´a}n, Laura and Aktas, Orhan and Buttmann, Mathias and Chan, Andrew and Fontaine, Bertrand and Gourraud, Pierre-Antoine and Hecker, Michael and Hoffjan, Sabine and Kubisch, Christian and K{\"u}mpfel, Tania and Luessi, Felix and Zettl, Uwe K. and Zipp, Frauke and Alloza, Iraide and Comabella, Manuel and Lill, Christina M. and Vandenbroeck, Koen}, title = {The rare IL22RA2 signal peptide coding variant rs28385692 decreases secretion of IL-22BP isoform-1, -2 and -3 and is associated with risk for multiple sclerosis}, series = {Cells}, volume = {9}, journal = {Cells}, number = {1}, issn = {2073-4409}, doi = {10.3390/cells9010175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200769}, year = {2020}, abstract = {The IL22RA2 locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly (p = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by IL22RA2 (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset (p = 3.17 × 10\(^{-4}\)). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50\%-60\% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS.}, language = {en} } @article{ButtmannSeuffertMaederetal.2016, author = {Buttmann, Mathias and Seuffert, Linda and M{\"a}der, Uwe and Toyka, Klaus V.}, title = {Malignancies after mitoxantrone for multiple sclerosis: a retrospective cohort study}, series = {Neurology}, volume = {86}, journal = {Neurology}, doi = {10.1212/WNL.0000000000002745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188300}, pages = {2203-2207}, year = {2016}, abstract = {Objective: To assess the therapy-related risk of malignancies in mitoxantrone-treated patients with multiple sclerosis. Methods: This retrospective observational cohort study included all mitoxantrone-treated patients with multiple sclerosis seen at our department between 1994 and 2007. We collected follow-up information on medically confirmed malignancies, life status, and cause of death, as of 2010. Malignancy rates were compared to the German national cancer registry matched for sex, age, and year of occurrence. Results: Follow-up was completed in 676 of 677 identified patients. Median follow-up time was 8.7 years (interquartile range 6.8-11.2), corresponding to 6,220 person-years. Median cumulative mitoxantrone dose was 79.0 mg/m(2) (interquartile range 50.8-102.4). Thirty-seven patients (5.5\%) were diagnosed with a malignancy after mitoxantrone initiation, revealing a standardized incidence ratio of 1.50 (95\% confidence interval CI] 1.05-2.08). Entities included breast cancer (n = 9), colorectal cancer (n = 7), acute myeloid leukemia (n = 4, 0.6\%), and others (each entity n = 1 or 2). The standardized incidence ratio of colorectal cancer was 2.98 (95\% CI 1.20-6.14) and of acute myeloid leukemia 10.44 (95\% CI 3.39-24.36). It was not increased for other entities including breast cancer. Multivariate Cox regression identified higher age at treatment initiation but neither cumulative mitoxantrone dose (>75 vs 75 mg/m(2)) nor treatment with other immunosuppressive drugs or sex as a risk factor. Fifty-five patients had died, among them 12 of a malignancy and 43 reportedly of other causes. Conclusions: While the overall incidence of malignancies was only mildly increased, the risk of leukemia and colorectal cancer was heightened. If confirmed, posttherapy colonoscopy could become advisable.}, language = {en} } @article{HaarmannSchuhmannSilwedeletal.2019, author = {Haarmann, Axel and Schuhmann, Michael K. and Silwedel, Christine and Monoranu, Camelia-Maria and Stoll, Guido and Buttmann, Mathias}, title = {Human brain endothelial CXCR2 is inflammation-inducible and mediates CXCL5- and CXCL8-triggered paraendothelial barrier breakdown}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms20030602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201297}, year = {2019}, abstract = {Chemokines (C-X-C) motif ligand (CXCL) 5 and 8 are overexpressed in patients with multiple sclerosis, where CXCL5 serum levels were shown to correlate with blood-brain barrier dysfunction as evidenced by gadolinium-enhanced magnetic resonance imaging. Here, we studied the potential role of CXCL5/CXCL8 receptor 2 (CXCR2) as a regulator of paraendothelial brain barrier function, using the well-characterized human cerebral microvascular endothelial cell line hCMEC/D3. Low basal CXCR2 mRNA and protein expression levels in hCMEC/D3 were found to strongly increase under inflammatory conditions. Correspondingly, immunohistochemistry of brain biopsies from two patients with active multiple sclerosis revealed upregulation of endothelial CXCR2 compared to healthy control tissue. Recombinant CXCL5 or CXCL8 rapidly and transiently activated Akt/protein kinase B in hCMEC/D3. This was followed by a redistribution of tight junction-associated protein zonula occludens-1 (ZO-1) and by the formation of actin stress fibers. Functionally, these morphological changes corresponded to a decrease of paracellular barrier function, as measured by a real-time electrical impedance-sensing system. Importantly, preincubation with the selective CXCR2 antagonist SB332235 partially prevented chemokine-induced disturbance of both tight junction morphology and function. We conclude that human brain endothelial CXCR2 may contribute to blood-brain barrier disturbance under inflammatory conditions with increased CXCL5 and CXCL8 expression, where CXCR2 may also represent a novel pharmacological target for blood-brain barrier stabilization.}, language = {en} }