@article{TappeMeyerOesterleinetal.2011, author = {Tappe, Dennis and Meyer, Michael and Oesterlein, Anett and Jaye, Assan and Frosch, Matthias and Schoen, Christoph and Pantchev, Nikola}, title = {Transmission of Armillifer armillatus Ova at Snake Farm, The Gambia, West Africa}, series = {Emerging Infectious Diseases}, volume = {17}, journal = {Emerging Infectious Diseases}, number = {2}, doi = {10.3201/eid1702.101118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142804}, pages = {251-254}, year = {2011}, abstract = {Visceral pentastomiasis caused by Armillifer armillatus larvae was diagnosed in 2 dogs in The Gambia. Parasites were subjected to PCR; phylogenetic analysis confirmed relatedness with branchiurans/crustaceans. Our investigation highlights transmission of infective A. armillatus ova to dogs and, by serologic evidence, also to 1 human, demonstrating a public health concern.}, language = {en} } @article{TahaClausLappannetal.2016, author = {Taha, Muhamed-Kheir and Claus, Heike and Lappann, Martin and Veyrier, Fr{\´e}d{\´e}ric J. and Otto, Andreas and Becher, D{\"o}rte and Deghmane, Ala-Eddine and Frosch, Matthias and Hellenbrand, Wiebke and Hong, Eva and du Ch{\^a}telet, Isabelle Parent and Prior, Karola and Harmsen, Dag and Vogel, Ulrich}, title = {Evolutionary Events Associated with an Outbreak of Meningococcal Disease in Men Who Have Sex with Men}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0154047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179870}, year = {2016}, abstract = {Meningococci spread via respiratory droplets, whereas the closely related gonococci are transmitted sexually. Several outbreaks of invasive meningococcal disease have been reported in Europe and the United States among men who have sex with men (MSM). We recently identified an outbreak of serogroup C meningococcal disease among MSM in Germany and France. In this study, genomic and proteomic techniques were used to analyze the outbreak isolates. In addition, genetically identical urethritis isolates were recovered from France and Germany and included in the analysis. Genome sequencing revealed that the isolates from the outbreak among MSM and from urethritis cases belonged to a clade within clonal complex 11. Proteome analysis showed they expressed nitrite reductase, enabling anaerobic growth as previously described for gonococci. Invasive isolates from MSM, but not urethritis isolates, further expressed functional human factor H binding protein associated with enhanced survival in a newly developed transgenic mouse model expressing human factor H, a complement regulatory protein. In conclusion, our data suggest that urethritis and outbreak isolates followed a joint adaptation route including adaption to the urogenital tract.}, language = {en} } @article{SchubertUnkmeirKonradSlaninaetal.2010, author = {Schubert-Unkmeir, Alexandra and Konrad, Christian and Slanina, Heiko and Czapek, Florian and Hebling, Sabrina and Frosch, Matthias}, title = {Neisseria meningitidis Induces Brain Microvascular Endothelial Cell Detachment from the Matrix and Cleavage of Occludin: A Role for MMP-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68589}, year = {2010}, abstract = {Disruption of the blood-brain barrier (BBB) is a hallmark event in the pathophysiology of bacterial meningitis. Several inflammatory mediators, such as tumor necrosis factor alpha (TNF-a), nitric oxide and matrix metalloproteinases (MMPs), contribute to this disruption. Here we show that infection of human brain microvascular endothelial cells (HBMEC) with Neisseria meningitidis induced an increase of permeability at prolonged time of infection. This was paralleled by an increase in MMP-8 activity in supernatants collected from infected cells. A detailed analysis revealed that MMP-8 was involved in the proteolytic cleavage of the tight junction protein occludin, resulting in its disappearance from the cell periphery and cleavage to a lower-sized 50-kDa protein in infected HBMEC. Abrogation of MMP-8 activity by specific inhibitors as well as transfection with MMP-8 siRNA abolished production of the cleavage fragment and occludin remained attached to the cell periphery. In addition, MMP-8 affected cell adherence to the underlying matrix. A similar temporal relationship was observed for MMP activity and cell detachment. Injury of the HBMEC monolayer suggested the requirement of direct cell contact because no detachment was observed when bacteria were placed above a transwell membrane or when bacterial supernatant was directly added to cells. Inhibition of MMP-8 partially prevented detachment of infected HBMEC and restored BBB permeability. Together, we established that MMP-8 activity plays a crucial role in disassembly of cell junction components and cell adhesion during meningococcal infection.}, subject = {Neisseria meningitidis}, language = {en} } @article{EliasSchoulsvandePoletal.2010, author = {Elias, Johannes and Schouls, Leo M. and van de Pol, Ingrid and Keijzers, Wendy C. and Martin, Diana R. and Glennie, Anne and Oster, Philipp and Frosch, Matthias and Vogel, Ulrich and van der Ende, Arie}, title = {Vaccine Preventability of Meningococcal Clone, Greater Aachen Region, Germany}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68083}, year = {2010}, abstract = {No abstract available}, subject = {IMD}, language = {en} } @article{BrehonyTrotterRamsayetal.2014, author = {Brehony, Carina and Trotter, Caronline L. and Ramsay, Mary E. and Chandra, Manosree and Jolley, Keith A. and van der Ende, Arie and Carion, Fran{\c{c}}oise and Berthelsen, Lene and Hoffmann, Steen and Harðard{\´o}ttir, Hj{\"o}rd{\´i}s and Vazques, Julio A. and Murphy, Karen and Toropainen, Maija and Cani{\c{c}}a, Manuela and Ferreira, Eugenia and Diggle, Mathew and Edwards, Giles F. and Taha, Muhamed-Kheir and Stefanelli, Paola and Kriz, Paula and Gray, Steve J. and Fox, Andrew J. and Jacobsson, Susanne and Claus, Heike and Vogel, Ulrich and Tzanakaki, Georgina and Heuberger, Sigrid and Caugant, Dominique A. and Frosch, Matthias and Maiden, Martin C. J.}, title = {Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development}, series = {Clinical and Vaccine Immunology : CVI}, volume = {21}, journal = {Clinical and Vaccine Immunology : CVI}, number = {6}, doi = {10.1128/cvi.00133-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120808}, pages = {847-53}, year = {2014}, abstract = {New vaccines targeting meningococci expressing serogroup B polysaccharide have been developed, with some being licensed in Europe. Coverage depends on the distribution of disease-associated genotypes, which may vary by age. It is well established that a small number of hyperinvasive lineages account for most disease, and these lineages are associated with particular antigens, including vaccine candidates. A collection of 4,048 representative meningococcal disease isolates from 18 European countries, collected over a 3-year period, were characterized by multilocus sequence typing (MLST). Age data were available for 3,147 isolates. The proportions of hyperinvasive lineages, identified as particular clonal complexes (ccs) by MLST, differed among age groups. Subjects <1 year of age experienced lower risk of sequence type 11 (ST-11) cc, ST-32 cc, and ST-269 cc disease and higher risk of disease due to unassigned STs, 1- to 4-year-olds experienced lower risk of ST-11 cc and ST-32 cc disease, 5- to 14-year-olds were less likely to experience ST-11 cc and ST-269 cc disease, and ≥25-year-olds were more likely to experience disease due to less common ccs and unassigned STs. Younger and older subjects were vulnerable to a more diverse set of genotypes, indicating the more clonal nature of genotypes affecting adolescents and young adults. Knowledge of temporal and spatial diversity and the dynamics of meningococcal populations is essential for disease control by vaccines, as coverage is lineage specific. The nonrandom age distribution of hyperinvasive lineages has consequences for the design and implementation of vaccines, as different variants, or perhaps targets, may be required for different age groups.}, language = {en} } @article{MaidenFrosch2012, author = {Maiden, Martin C. J. and Frosch, Matthias}, title = {Can we, should we, eradicate the meningococcus?}, series = {Vaccine}, volume = {30}, journal = {Vaccine}, number = {Suppl. 2}, doi = {10.1016/j.vaccine.2011.12.068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125646}, pages = {B52-B56}, year = {2012}, abstract = {The eradication of infectious agents is an attractive means of disease control that, to date, has been achieved for only one human pathogen, the smallpox virus. The introduction of vaccines against Neisseria meningitidis into immunisation schedules, and particularly the conjugate polysaccharide vaccines which can interrupt transmission, raises the question of whether disease caused by this obligate human bacterium can be controlled, eliminated, or even eradicated. The limited number of meningococcal serogroups, lack of an animal reservoir, and importance of meningococcal disease are considerations in favour of eradication; however, the commensal nature of most infections, the high diversity of meningococcal populations, and the lack of comprehensive vaccines are all factors that suggest that this is not feasible. Indeed, any such attempt might be harmful by perturbing the human microbiome and its interaction with the immune system. On balance, the control and possible elimination of disease caused by particular disease-associated meningococcal genotypes is a more achievable and worthwhile goal.}, language = {en} } @article{BijuSchwarzLinkeetal.2011, author = {Biju, Joseph and Schwarz, Roland and Linke, Burkhard and Blom, Jochen and Becker, Anke and Claus, Heike and Goesmann, Alexander and Frosch, Matthias and M{\"u}ller, Tobias and Vogel, Ulrich and Schoen, Christoph}, title = {Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0018441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137960}, pages = {e18441}, year = {2011}, abstract = {Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40\% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.}, language = {en} } @article{AtanasovBenkertThelenetal.2013, author = {Atanasov, Georgi and Benkert, Christoph and Thelen, Armin and Tappe, Dennis and Frosch, Matthias and Teichmann, Dieter and Barth, Thomas F. E. and Wittekind, Christian and Schubert, Stefan and Jonas, Sven}, title = {Alveolar echinococcosis-spreading disease challenging clinicians: A case report and literature review}, series = {World Journal of Gastroenterology}, volume = {19}, journal = {World Journal of Gastroenterology}, number = {26}, doi = {10.3748/wjg.v19.i26.4257}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131525}, pages = {4257-4261}, year = {2013}, abstract = {Human alveolar echinococcosis (AE) is a potentially deadly disease; recent studies have shown that the endemic area of Echinococcus multilocularis, its causative agent, is larger than previously known. This disease has low prevalence and remains underreported in Europe. Emerging clinical data show that diagnostic difficulties are still common. We report on a 76-year old patient suffering from AE lesions restricted to the left lobe of the liver who underwent a curative extended left hemihepatectomy. Prior to the resection a liver biopsy under the suspicion of an atypical malignancy was performed. After the intervention he developed a pseudoaneurysm of the hepatic artery that was successfully coiled. Surprisingly, during surgery, the macroscopic appearance of the tumour revealed a growth pattern that was rather typical for cystic echinococcosis (CE), i.e., a gross tumour composed of multiple large vesicles with several centimeters in diameter. In addition, there were neither extensive adhesions nor infiltrations of the neighboring pancreas and diaphragm as was expected from previous imaging results. The unexpected diagnosis of AE was confirmed by definite histopathology, specific polymerase chain reaction and serology results. This is a rare case of unusual macroscopic presentation of AE that posed immense diagnostic challenges and had an eventful course. To our knowledge this is the first case of an autochthonous infection in this particular geographic area of Germany, the federal state of Saxony. This report may provide new hints for an expanding area of risk for AE and emphasizes the risk of complications in the scope of diagnostic procedures and the limitations of modern radiological imaging.}, language = {en} } @article{HarrisonClausJiangetal.2013, author = {Harrison, Odile B. and Claus, Heike and Jiang, Ying and Bennett, Julia S. and Bratcher, Holly B. and Jolley, Keith A. and Corton, Craig and Care, Rory and Poolman, Jan T. and Zollinger, Wendell D. and Frasch, Carl E. and Stephens, David S. and Feavers, Ian and Frosch, Matthias and Parkhill, Julian and Vogel, Ulrich and Quail, Michael A. and Bentley, Stephen D. and Maiden, Martin C. J.}, title = {Description and Nomenclature of Neisseria meningitidis Capsule Locus}, series = {Emerging Infectious Diseases}, volume = {19}, journal = {Emerging Infectious Diseases}, number = {4}, doi = {10.3201/eid1904.111799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131703}, pages = {566-573}, year = {2013}, abstract = {Pathogenic Neisseria meningitidis isolates contain a polysaccharide capsule that is the main virulence determinant for this bacterium. Thirteen capsular polysaccharides have been described, and nuclear magnetic resonance spectroscopy has enabled determination of the structure of capsular polysaccharides responsible for serogroup specificity. Molecular mechanisms involved in N. meningitidis capsule biosynthesis have also been identified, and genes involved in this process and in cell surface translocation are clustered at a single chromosomal locus termed cps. The use of multiple names for some of the genes involved in capsule synthesis, combined with the need for rapid diagnosis of serogroups commonly associated with invasive meningococcal disease, prompted a requirement for a consistent approach to the nomenclature of capsule genes. In this report, a comprehensive description of all N. meningitidis serogroups is provided, along with a proposed nomenclature, which was presented at the 2012 XVIIIth International Pathogenic Neisseria Conference.}, language = {en} } @article{EliasHeuschmannSchmittetal.2013, author = {Elias, Johannes and Heuschmann, Peter U. and Schmitt, Corinna and Eckhardt, Frithjof and Boehm, Hartmut and Maier, Sebastian and Kolb-M{\"a}urer, Annette and Riedmiller, Hubertus and M{\"u}llges, Wolfgang and Weisser, Christoph and Wunder, Christian and Frosch, Matthias and Vogel, Ulrich}, title = {Prevalence dependent calibration of a predictive model for nasal carriage of methicillin-resistant Staphylococcus aureus}, series = {BMC Infectious Diseases}, journal = {BMC Infectious Diseases}, doi = {10.1186/1471-2334-13-111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96091}, year = {2013}, abstract = {Background Published models predicting nasal colonization with Methicillin-resistant Staphylococcus aureus among hospital admissions predominantly focus on separation of carriers from non-carriers and are frequently evaluated using measures of discrimination. In contrast, accurate estimation of carriage probability, which may inform decisions regarding treatment and infection control, is rarely assessed. Furthermore, no published models adjust for MRSA prevalence. Methods Using logistic regression, a scoring system (values from 0 to 200) predicting nasal carriage of MRSA was created using a derivation cohort of 3091 individuals admitted to a European tertiary referral center between July 2007 and March 2008. The expected positive predictive value of a rapid diagnostic test (GeneOhm, Becton \& Dickinson Co.) was modeled using non-linear regression according to score. Models were validated on a second cohort from the same hospital consisting of 2043 patients admitted between August 2008 and January 2012. Our suggested correction score for prevalence was proportional to the log-transformed odds ratio between cohorts. Calibration before and after correction, i.e. accurate classification into arbitrary strata, was assessed with the Hosmer-Lemeshow-Test. Results Treating culture as reference, the rapid diagnostic test had positive predictive values of 64.8\% and 54.0\% in derivation and internal validation corhorts with prevalences of 2.3\% and 1.7\%, respectively. In addition to low prevalence, low positive predictive values were due to high proportion (> 66\%) of mecA-negative Staphylococcus aureus among false positive results. Age, nursing home residence, admission through the medical emergency department, and ICD-10-GM admission diagnoses starting with "A" or "J" were associated with MRSA carriage and were thus included in the scoring system, which showed good calibration in predicting probability of carriage and the rapid diagnostic test's expected positive predictive value. Calibration for both probability of carriage and expected positive predictive value in the internal validation cohort was improved by applying the correction score. Conclusions Given a set of patient parameters, the presented models accurately predict a) probability of nasal carriage of MRSA and b) a rapid diagnostic test's expected positive predictive value. While the former can inform decisions regarding empiric antibiotic treatment and infection control, the latter can influence choice of screening method.}, language = {en} } @article{EliasFindlowBorrowetal.2013, author = {Elias, Johannes and Findlow, Jamie and Borrow, Ray and Tremmel, Angelika and Frosch, Matthias and Vogel, Ulrich}, title = {Persistence of antibodies in laboratory staff immunized with quadrivalent meningococcal polysaccharide vaccine}, series = {Journal of Occupational Medicine and Toxicology}, journal = {Journal of Occupational Medicine and Toxicology}, doi = {10.1186/1745-6673-8-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95953}, year = {2013}, abstract = {Background Occupational exposure to live meningococci can potentially cause invasive meningococcal disease in laboratory staff. While, until recently, immunization with quadrivalent polysaccharide vaccine represented one cornerstone of protection, data on long-term persistence of antibodies in adults remain scarce. Methods We analyzed the relationship of antibody levels and time following quadrivalent polysaccharide vaccination (Mencevax® ACWY, GlaxoSmithKline) in a cross-sectional sample of 20 laboratory workers vaccinated at ages between 16.4 to 40.7 years from Germany. Sera were obtained 0.4 to 158.5 (median 35.3) months after vaccination. At the time of sampling, laboratory workers had been regularly exposed to meningococci for periods between 3.2 to 163.8 (median 41.2) months. Serum bactericidal assay (SBA) with rabbit complement and a microsphere-based flow analysis method were used to determine bactericidal titers and concentrations of IgG, respectively, against serogroups A, C, W135, and Y. Decay of antibodies was modeled using linear regression. Protective levels were defined as SBA titers ≥ 8. Results Half-lives of SBA titers against serogroups A, C, W135, and Y were estimated at 27.4, 21.9, 18.8, and 28.0 months, respectively. Average durations of protection were estimated at 183.9, 182.0, 114.6, and 216.4 months, respectively. Inter-individual variation was high; using lower margins of 95\% prediction intervals, minimal durations of protection against serogroups A, C, W135 and Y were estimated at 33.5, 24.6, 0.0, and 55.1 months, respectively. The proportion of staff with protective SBA titers against W135 (65.0\%) was significantly lower than proportions protected against A (95.0\%), C (94.7\%), and Y (95.0\%). Consistently, geometric mean titer (97.0) and geometric mean concentration of IgG (2.1 μg/ml) was lowest against serogroup W135. SBA titers in a subset of individuals with incomplete protection rose to ≥ 128 (≥ 8 fold) after reimmunization with a quadrivalent glycoconjugate vaccine. Conclusions The average duration of protection following immunization with a quadrivalent polysaccharide vaccine in adults was ≥ 115 months regardless of serogroup. A substantial proportion (approximately 23\% according to our decay model) of adult vaccinees may not retain protection against serogroup W135 for five years, the time suggested for reimmunization.}, language = {en} } @article{KlughammerDittrichBlometal.2017, author = {Klughammer, Johanna and Dittrich, Marcus and Blom, Jochen and Mitesser, Vera and Vogel, Ulrich and Frosch, Matthias and Goesmann, Alexander and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Comparative genome sequencing reveals within-host genetic changes in Neisseria meningitidis during invasive disease}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0169892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159547}, pages = {e0169892}, year = {2017}, abstract = {Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.}, language = {en} }