@article{ScholzGuanNieberleretal.2017, author = {Scholz, Nicole and Guan, Chonglin and Nieberler, Matthias and Grotmeyer, Alexander and Maiellaro, Isabella and Gao, Shiqiang and Beck, Sebastian and Pawlak, Matthias and Sauer, Markus and Asan, Esther and Rothemund, Sven and Winkler, Jana and Pr{\"o}mel, Simone and Nagel, Georg and Langenhan, Tobias and Kittel, Robert J}, title = {Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons}, series = {eLife}, volume = {6}, journal = {eLife}, number = {e28360}, doi = {10.7554/eLife.28360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170520}, year = {2017}, abstract = {Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.}, language = {en} } @phdthesis{Nieberler2019, author = {Nieberler, Matthias}, title = {The physiological role of autoproteolysis of the Adhesion GPCR Latrophilin/dCIRL}, doi = {10.25972/OPUS-16589}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165894}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {G protein-coupled receptors of the Adhesion family (aGPCRs) comprise the second largest group within the GPCR realm with over 30 mammalian homologs. They contain a unique structure with unusually large extracellular domains (ECDs) holding many structural folds known to mediate cell-cell and cell-matrix interactions. Furthermore, aGPCRs undergo autoproteolytic cleavage at the GPCR proteolysis site (GPS), an integral portion of the GPCR autoproteolysis inducing (GAIN) domain. Thus far, it is largely unknown if and how self-cleavage affects aGPCR activation and signaling and how these signals may shape the physiological function of cells. Latrophilin, alternatively termed the calcium-independent receptor of α-latrotoxin (CIRL) constitutes a highly conserved, prototypic aGPCR and has been assigned roles in various biological processes such as synaptic development and maturation or the regulation of neurotransmitter release. The Drosophila melanogaster homolog dCIRL is found in numerous sensory neurons including the mechanosensory larval pentascolopidial chordotonal organs (CHOs), which rely on dCIRL function in order to sense mechanical cues and to modulate the mechanogating properties of present ionotropic receptors. This study reveals further insight into the broad distribution of dCirl expression throughout the larval central nervous system, at the neuromuscular junction (NMJ), as well as subcellular localization of dCIRL in distal dendrites and cilia of chordotonal neurons. Furthermore, targeted mutagenesis which disabled GPS cleavage of dCIRL left intracellular trafficking in larval CHOs unaffected and proved autoproteolysis is not required for dCIRL function in vivo. However, substitution of a threonine residue, intrinsic to a putative tethered agonist called Stachel that has previously been documented for several other aGPCRs, abrogated receptor function. Conclusively, while this uncovered the presence of Stachel in dCIRL, it leaves the question about the biological relevance of the predetermined breaking point at the GPS unanswered. In an independent approach, the structure of the "Inter-RBL-HRM" (IRH) region, the region linking the N-terminal Rhamnose-binding lectin-like (RBL) and the hormone receptor motif (HRM) domains of dCIRL, was analyzed. Results suggest random protein folding, excessive glycosylation, and a drastic expansion of the size of IRH. Therefore, the IRH might represent a molecular spacer ensuring a certain ECD dimension, which in turn may be a prerequisite for proper receptor function. Taken together, the results of this study are consistent with dCIRL's mechanoceptive faculty and its role as a molecular sensor that translates mechanical cues into metabotropic signals through a yet undefined Stachel-dependent mechanism.}, subject = {Latrophilin}, language = {en} } @article{McNeillZieglerRadtkeetal.2020, author = {McNeill, Rhiannon V. and Ziegler, Georg C. and Radtke, Franziska and Nieberler, Matthias and Lesch, Klaus‑Peter and Kittel‑Schneider, Sarah}, title = {Mental health dished up — the use of iPSC models in neuropsychiatric research}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, issn = {0300-9564}, doi = {10.1007/s00702-020-02197-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235666}, pages = {1547-1568}, year = {2020}, abstract = {Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006-2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient's own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.}, language = {en} }