@article{HechtLeowanawatGerlachetal.2020, author = {Hecht, Markus and Leowanawat, Pawaret and Gerlach, Tabea and Stepanenko, Vladimir and Stolte, Matthias and Lehmann, Matthias and W{\"u}rthner, Frank}, title = {Self-Sorting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetra-Bay-Acyloxy Perylene Bisimide}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {39}, doi = {10.1002/anie.202006744}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224586}, pages = {17084 -- 17090}, year = {2020}, abstract = {A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self-assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen-bond-directed self-assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid-crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo- or heterochiral self-assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self-sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self-assemblies proceeds by dissociation via the monomeric state.}, language = {en} } @article{HocheSchulzDietrichetal.2019, author = {Hoche, Joscha and Schulz, Alexander and Dietrich, Lysanne Monika and Humeniuk, Alexander and Stolte, Matthias and Schmidt, David and Brixner, Tobias and W{\"u}rthner, Frank and Mitric, Roland}, title = {The origin of the solvent dependence of fluorescence quantum yields in dipolar merocyanine dyes}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198707}, pages = {11013}, year = {2019}, abstract = {Fluorophores with high quantum yields are desired for a variety of applications. Optimization of promising chromophores requires an understanding of the non-radiative decay channels that compete with the emission of photons. We synthesized a new derivative of the famous laser dye 4-dicyanomethylen-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM),i.e., merocyanine 4-(dicyanomethylene)-2-tert-butyl-6-[3-(3-butyl-benzothiazol-2-ylidene)1-propenyl]-4H-pyran (DCBT). We measured fluorescence lifetimes and quantum yields in a variety of solvents and found a trend opposite to the energy gap law.This motivated a theoretical investigation into the possible non-radiative decay channels. We propose that a barrier to a conical intersection exists that is very sensitive to the solvent polarity. The conical intersection is characterized by a twisted geometry which allows a subsequent photoisomerization. Transient absorption measurements confirmed the formation of a photoisomer in unpolar solvents, while the measurements of fluorescence quantum yields at low temperature demonstrated the existence of an activation energy barrier.}, language = {en} } @unpublished{StennettBissingerGriesbecketal.2019, author = {Stennett, Tom E. and Bissinger, Philipp and Griesbeck, Stefanie and Ullrich, Stefan and Krummenacher, Ivo and Auth, Michael and Sperlich, Andreas and Stolte, Matthias and Radacki, Krzysztof and Yao, Chang-Jiang and W{\"u}rthner, Frank and Steffen, Andreas and Marder, Todd B. and Braunschweig, Holger}, title = {Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201900889}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180391}, year = {2019}, abstract = {In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts.}, language = {en} } @article{HeStolteBurschkaetal.2015, author = {He, Tao and Stolte, Matthias and Burschka, Christian and Hansen, Nis Hauke and Musiol, Thomas and K{\"a}lblein, Daniel and Pflaum, Jens and Tao, Xutang and Brill, Jochen and W{\"u}rthner, Frank}, title = {Single-crystal field-effect transistors of new Cl\(_{2}\)-NDI polymorph processed by sublimation in air}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {5954}, doi = {10.1038/ncomms6954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149255}, year = {2015}, abstract = {Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (\(\beta\)-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (\(\alpha\)-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\alpha\)-phase) and up to 3.5 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\beta\)-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on \(\beta\)-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\). The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps.}, language = {en} } @article{MuellerSpenstKagereretal.2022, author = {M{\"u}ller, Ulrich and Spenst, Peter and Kagerer, Philipp and Stolte, Matthias and W{\"u}rthner, Frank and Pflaum, Jens}, title = {Photon-Correlation Studies on Multichromophore Macrocycles of Perylene Dyes}, series = {Advanced Optical Materials}, volume = {10}, journal = {Advanced Optical Materials}, number = {14}, doi = {10.1002/adom.202200234}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287219}, year = {2022}, abstract = {Organic dyes offer unique properties for their application as room temperature single photon emitters. By means of photon-correlation, the emission characteristics of macrocyclic para-xylylene linked perylene bisimide (PBI) trimers and tetramers dispersed in polymethyl methacrylate matrices are analyzed. The optical data indicate that, despite of the strong emission enhancement of PBI trimers and tetramers according to their larger number of chromophores, the photon-correlation statistics still obeys that of single photon emitters. Moreover, driving PBI trimers and tetramers at higher excitation powers, saturated emission behavior for monomers is found while macrocycle emission is still far-off saturation but shows enhanced fluctuations. This observation is attributed to fast singlet-singlet annihilation, i.e., faster than the radiative lifetime of the excited S1 state, and the enlarged number of conformational arrangements of multichromophores in the polymeric host. Finally, embedding trimeric PBI macrocycles in active organic light-emitting diode matrices, electrically driven bright fluorescence together with an indication for antibunching at room temperature can be detected. This, so far, has only been observed for phosphorescent emitters that feature much longer lifetimes of the excited states and, thus, smaller radiative recombination rates. The results are discussed in the context of possible effects on the g(2) behavior of molecular emitters.}, language = {en} } @article{KimSchembriBialasetal.2022, author = {Kim, Jin Hong and Schembri, Tim and Bialas, David and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Slip-Stacked J-Aggregate Materials for Organic Solar Cells and Photodetectors}, series = {Advanced Materials}, volume = {34}, journal = {Advanced Materials}, number = {22}, doi = {10.1002/adma.202104678}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276537}, year = {2022}, abstract = {Dye-dye interactions affect the optical and electronic properties in organic semiconductor films of light harvesting and detecting optoelectronic applications. This review elaborates how to tailor these properties of organic semiconductors for organic solar cells (OSCs) and organic photodiodes (OPDs). While these devices rely on similar materials, the demands for their optical properties are rather different, the former requiring a broad absorption spectrum spanning from the UV over visible up to the near-infrared region and the latter an ultra-narrow absorption spectrum at a specific, targeted wavelength. In order to design organic semiconductors satisfying these demands, fundamental insights on the relationship of optical properties are provided depending on molecular packing arrangement and the resultant electronic coupling thereof. Based on recent advancements in the theoretical understanding of intermolecular interactions between slip-stacked dyes, distinguishing classical J-aggregates with predominant long-range Coulomb coupling from charge transfer (CT)-mediated or -coupled J-aggregates, whose red-shifts are primarily governed by short-range orbital interactions, is suggested. Within this framework, the relationship between aggregate structure and functional properties of representative classes of dye aggregates is analyzed for the most advanced OSCs and wavelength-selective OPDs, providing important insights into the rational design of thin-film optoelectronic materials.}, language = {en} } @article{MenekseRennerMahlmeisteretal.2020, author = {Menekse, Kaan and Renner, Rebecca and Mahlmeister, Bernhard and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Bowl-shaped naphthalimide-annulated corannulene as nonfullerene acceptor in organic solar cells}, series = {Organic Materials}, volume = {2}, journal = {Organic Materials}, number = {3}, issn = {2625-1825}, doi = {10.1055/s-0040-1714283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299095}, pages = {229-234}, year = {2020}, abstract = {An electron-poor bowl-shaped naphthalimide-annulated corannulene with branched alkyl residues in the imide position was synthesized by a palladium-catalyzed cross-coupling annulation sequence. This dipolar compound exhibits strong absorption in the visible range along with a low-lying LUMO level at -3.85 eV, enabling n-type charge transport in organic thin-film transistors. Furthermore, we processed inverted bulk-heterojunction solar cells in combination with the two donor polymers PCE-10 and PM6 to achieve open-circuit voltages up to 1.04 V. By using a blend of the self-assembled naphthalimide-annulated corannulene and PCE-10, we were able to obtain a power conversion efficiency of up to 2.1\%, which is to the best of our knowledge the highest reported value for a corannulene-based organic solar cell to date.}, language = {en} } @article{KimLiessStolteetal.2021, author = {Kim, Jin Hong and Liess, Andreas and Stolte, Matthias and Krause, Ana-Maria and Stepanenko, Vladimir and Zhong, Chuwei and Bialas, David and Spano, Frank and W{\"u}rthner, Frank}, title = {An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye}, series = {Advanced Materials}, volume = {33}, journal = {Advanced Materials}, number = {26}, doi = {10.1002/adma.202100582}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256374}, year = {2021}, abstract = {A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC\(_{61}\)BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3\% and a full-width at half-maximum of only 85 nm (815 cm\(^{-1}\)) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications.}, language = {en} } @article{PeseschkianCordtsGuentheretal.2021, author = {Peseschkian, Tara and Cordts, Isabell and G{\"u}nther, Ren{\´e} and Stolte, Benjamin and Zeller, Daniel and Schr{\"o}ter, Carsten and Weyen, Ute and Regensburger, Martin and Wolf, Joachim and Schneider, Ilka and Hermann, Andreas and Metelmann, Moritz and Kohl, Zacharias and Linker, Ralf A. and Koch, Jan Christoph and B{\"u}chner, Boriana and Weiland, Ulrike and Sch{\"o}nfelder, Erik and Heinrich, Felix and Osmanovic, Alma and Klopstock, Thomas and Dorst, Johannes and Ludolph, Albert C. and Boentert, Matthias and Hagenacker, Tim and Deschauer, Marcus and Lingor, Paul and Petri, Susanne and Schreiber-Katz, Olivia}, title = {A nation-wide, multi-center study on the quality of life of ALS patients in Germany}, series = {Brain Sciences}, volume = {11}, journal = {Brain Sciences}, number = {3}, issn = {2076-3425}, doi = {10.3390/brainsci11030372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234147}, year = {2021}, abstract = {Improving quality of life (QoL) is central to amyotrophic lateral sclerosis (ALS) treatment. This Germany-wide, multicenter cross-sectional study analyses the impact of different symptom-specific treatments and ALS variants on QoL. Health-related QoL (HRQoL) in 325 ALS patients was assessed using the Amyotrophic Lateral Sclerosis Assessment Questionnaire 5 (ALSAQ-5) and EuroQol Five Dimension Five Level Scale (EQ-5D-5L), together with disease severity (captured by the revised ALS Functional Rating Scale (ALSFRS-R)) and the current care and therapies used by our cohort. At inclusion, the mean ALSAQ-5 total score was 56.93 (max. 100, best = 0) with a better QoL associated with a less severe disease status (β = -1.96 per increase of one point in the ALSFRS-R score, p < 0.001). "Limb-onset" ALS (lALS) was associated with a better QoL than "bulbar-onset" ALS (bALS) (mean ALSAQ-5 total score 55.46 versus 60.99, p = 0.040). Moreover, with the ALSFRS-R as a covariate, using a mobility aid (β = -7.60, p = 0.001), being tracheostomized (β = -14.80, p = 0.004) and using non-invasive ventilation (β = -5.71, p = 0.030) were associated with an improved QoL, compared to those at the same disease stage who did not use these aids. In contrast, antidepressant intake (β = 5.95, p = 0.007), and increasing age (β = 0.18, p = 0.023) were predictors of worse QoL. Our results showed that the ALSAQ-5 was better-suited for ALS patients than the EQ-5D-5L. Further, the early and symptom-specific clinical management and supply of assistive devices can significantly improve the individual HRQoL of ALS patients. Appropriate QoL questionnaires are needed to monitor the impact of treatment to provide the best possible and individualized care.}, language = {en} } @article{BrustNaglerShoyamaetal.2023, author = {Brust, Felix and Nagler, Oliver and Shoyama, Kazutaka and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Organic Light-Emitting Diodes Based on Silandiol-Bay-Bridged Perylene Bisimides}, series = {Advanced Optical Materials}, volume = {11}, journal = {Advanced Optical Materials}, number = {5}, doi = {10.1002/adom.202202676}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312599}, year = {2023}, abstract = {Perylene bisimides (PBIs) are among the best fluorophores but have to be enwrapped for optoelectronic applications by large and heavy substituents to prevent their ππ-stacking, which is known to accelerate non-radiative decay processes in the solid state. Here, light-weight di-tert-butylsilyl groups are introduced to bridge 1,12-dihydroxy and 1,6,7,12-tetrahydroxy PBIs to afford sublimable dyes for vacuum-processed optoelectronic devices. For both new compounds, this substitution provides a twisted and shielded perylene π-core whose, via OSiObridges, rigid structure affords well-resolved absorption and emission spectra with strong fluorescence in solution, as well as in the solid state. The usefulness of these dyes for vacuum-processed optoelectronic devices is demonstrated in organic light-emitting diodes (OLEDs) that show monomer-like emission spectra and high maximum external quantum efficiency (EQEmax) values of up to 3.1\% for the doubly silicon-bridged PBI.}, language = {en} }