@article{BoldStolteShoyamaetal.2022, author = {Bold, Kevin and Stolte, Matthias and Shoyama, Kazutaka and Holzapfel, Marco and Schmiedel, Alexander and Lambert, Christoph and W{\"u}rthner, Frank}, title = {Macrocyclic donor-acceptor dyads composed of a perylene bisimide dye surrounded by oligothiophene bridges}, series = {Angewandte Chemie Internationale Edition}, volume = {61}, journal = {Angewandte Chemie Internationale Edition}, number = {1}, doi = {10.1002/anie.202113598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256569}, year = {2022}, abstract = {Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum-mediated cross-coupling strategy. The crystal structure of the double bridged PBI reveals all syn-arranged thiophene units that completely enclose the planar PBI chromophore via a 12-membered macrocycle. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor-acceptor dyads show ultrafast F{\"o}rster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent.}, language = {en} } @article{BoldStolteShoyamaetal.2022, author = {Bold, Kevin and Stolte, Matthias and Shoyama, Kazutaka and Krause, Ana-Maria and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and W{\"u}rthner, Frank}, title = {Macrocyclic Donor-Acceptor Dyads Composed of Oligothiophene Half-Cycles and Perylene Bisimides}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {30}, doi = {10.1002/chem.202200355}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276435}, year = {2022}, abstract = {A series of donor-acceptor (D-A) macrocyclic dyads consisting of an electron-poor perylene bisimide (PBI) π-scaffold bridged with electron-rich α-oligothiophenes bearing four, five, six and seven thiophene units between the two phenyl-imide substituents has been synthesized and characterized by steady-state UV/Vis absorption and fluorescence spectroscopy, cyclic and differential pulse voltammetry as well as transient absorption spectroscopy. Tying the oligothiophene strands in a conformationally fixed macrocyclic arrangement leads to a more rigid π-scaffold with vibronic fine structure in the respective absorption spectra. Electrochemical analysis disclosed charged state properties in solution which are strongly dependent on the degree of rigidification within the individual macrocycle. Investigation of the excited state dynamics revealed an oligothiophene bridge size-dependent fast charge transfer process for the macrocyclic dyads upon PBI subunit excitation.}, language = {en} } @article{BrustNaglerShoyamaetal.2023, author = {Brust, Felix and Nagler, Oliver and Shoyama, Kazutaka and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Organic Light-Emitting Diodes Based on Silandiol-Bay-Bridged Perylene Bisimides}, series = {Advanced Optical Materials}, volume = {11}, journal = {Advanced Optical Materials}, number = {5}, doi = {10.1002/adom.202202676}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312599}, year = {2023}, abstract = {Perylene bisimides (PBIs) are among the best fluorophores but have to be enwrapped for optoelectronic applications by large and heavy substituents to prevent their ππ-stacking, which is known to accelerate non-radiative decay processes in the solid state. Here, light-weight di-tert-butylsilyl groups are introduced to bridge 1,12-dihydroxy and 1,6,7,12-tetrahydroxy PBIs to afford sublimable dyes for vacuum-processed optoelectronic devices. For both new compounds, this substitution provides a twisted and shielded perylene π-core whose, via OSiObridges, rigid structure affords well-resolved absorption and emission spectra with strong fluorescence in solution, as well as in the solid state. The usefulness of these dyes for vacuum-processed optoelectronic devices is demonstrated in organic light-emitting diodes (OLEDs) that show monomer-like emission spectra and high maximum external quantum efficiency (EQEmax) values of up to 3.1\% for the doubly silicon-bridged PBI.}, language = {en} } @article{HeStolteBurschkaetal.2015, author = {He, Tao and Stolte, Matthias and Burschka, Christian and Hansen, Nis Hauke and Musiol, Thomas and K{\"a}lblein, Daniel and Pflaum, Jens and Tao, Xutang and Brill, Jochen and W{\"u}rthner, Frank}, title = {Single-crystal field-effect transistors of new Cl\(_{2}\)-NDI polymorph processed by sublimation in air}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {5954}, doi = {10.1038/ncomms6954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149255}, year = {2015}, abstract = {Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (\(\beta\)-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (\(\alpha\)-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\alpha\)-phase) and up to 3.5 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\beta\)-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on \(\beta\)-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\). The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps.}, language = {en} } @article{HeWuD'Avinoetal.2018, author = {He, Tao and Wu, Yanfei and D'Avino, Gabriele and Schmidt, Elliot and Stolte, Matthias and Cornil, J{\´e}r{\^o}me and Beljonne, David and Ruden, P. Paul and W{\"u}rthner, Frank and Frisbie, C. Daniel}, title = {Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04479-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227957}, year = {2018}, abstract = {Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.}, language = {en} } @article{HechtLeowanawatGerlachetal.2020, author = {Hecht, Markus and Leowanawat, Pawaret and Gerlach, Tabea and Stepanenko, Vladimir and Stolte, Matthias and Lehmann, Matthias and W{\"u}rthner, Frank}, title = {Self-Sorting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetra-Bay-Acyloxy Perylene Bisimide}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {39}, doi = {10.1002/anie.202006744}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224586}, pages = {17084 -- 17090}, year = {2020}, abstract = {A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self-assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen-bond-directed self-assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid-crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo- or heterochiral self-assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self-sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self-assemblies proceeds by dissociation via the monomeric state.}, language = {en} } @article{HerbstSoberatsLeowanawatetal.2018, author = {Herbst, Stefanie and Soberats, Bartolome and Leowanawat, Pawaret and Stolte, Matthias and Lehmann, Matthias and W{\"u}rthner, Frank}, title = {Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-05018-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319914}, year = {2018}, abstract = {Many discoid dyes self-assemble into columnar liquid-crystalline (LC) phases with packing arrangements that are undesired for photonic applications due to H-type exciton coupling. Here, we report a series of crystalline and LC perylene bisimides (PBIs) self-assembling into single or multi-stranded (two, three, and four strands) aggregates with predominant J-type exciton coupling. These differences in the supramolecular packing and optical properties are achieved by molecular design variations of tetra-bay phenoxy-dendronized PBIs with two N-H groups at the imide positions. The self-assembly is driven by hydrogen bonding, slipped π-π stacking, nanosegregation, and steric requirements of the peripheral building blocks. We could determine the impact of the packing motifs on the spectroscopic properties and demonstrate different J- and H-type coupling contributions between the chromophores. Our findings on structure-property relationships and strong J-couplings in bulk LC materials open a new avenue in the molecular engineering of PBI J-aggregates with prospective applications in photonics.}, language = {en} } @article{HocheSchulzDietrichetal.2019, author = {Hoche, Joscha and Schulz, Alexander and Dietrich, Lysanne Monika and Humeniuk, Alexander and Stolte, Matthias and Schmidt, David and Brixner, Tobias and W{\"u}rthner, Frank and Mitric, Roland}, title = {The origin of the solvent dependence of fluorescence quantum yields in dipolar merocyanine dyes}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198707}, pages = {11013}, year = {2019}, abstract = {Fluorophores with high quantum yields are desired for a variety of applications. Optimization of promising chromophores requires an understanding of the non-radiative decay channels that compete with the emission of photons. We synthesized a new derivative of the famous laser dye 4-dicyanomethylen-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM),i.e., merocyanine 4-(dicyanomethylene)-2-tert-butyl-6-[3-(3-butyl-benzothiazol-2-ylidene)1-propenyl]-4H-pyran (DCBT). We measured fluorescence lifetimes and quantum yields in a variety of solvents and found a trend opposite to the energy gap law.This motivated a theoretical investigation into the possible non-radiative decay channels. We propose that a barrier to a conical intersection exists that is very sensitive to the solvent polarity. The conical intersection is characterized by a twisted geometry which allows a subsequent photoisomerization. Transient absorption measurements confirmed the formation of a photoisomer in unpolar solvents, while the measurements of fluorescence quantum yields at low temperature demonstrated the existence of an activation energy barrier.}, language = {en} } @article{KimLiessStolteetal.2021, author = {Kim, Jin Hong and Liess, Andreas and Stolte, Matthias and Krause, Ana-Maria and Stepanenko, Vladimir and Zhong, Chuwei and Bialas, David and Spano, Frank and W{\"u}rthner, Frank}, title = {An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye}, series = {Advanced Materials}, volume = {33}, journal = {Advanced Materials}, number = {26}, doi = {10.1002/adma.202100582}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256374}, year = {2021}, abstract = {A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC\(_{61}\)BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3\% and a full-width at half-maximum of only 85 nm (815 cm\(^{-1}\)) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications.}, language = {en} } @article{KimSchembriBialasetal.2022, author = {Kim, Jin Hong and Schembri, Tim and Bialas, David and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Slip-Stacked J-Aggregate Materials for Organic Solar Cells and Photodetectors}, series = {Advanced Materials}, volume = {34}, journal = {Advanced Materials}, number = {22}, doi = {10.1002/adma.202104678}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276537}, year = {2022}, abstract = {Dye-dye interactions affect the optical and electronic properties in organic semiconductor films of light harvesting and detecting optoelectronic applications. This review elaborates how to tailor these properties of organic semiconductors for organic solar cells (OSCs) and organic photodiodes (OPDs). While these devices rely on similar materials, the demands for their optical properties are rather different, the former requiring a broad absorption spectrum spanning from the UV over visible up to the near-infrared region and the latter an ultra-narrow absorption spectrum at a specific, targeted wavelength. In order to design organic semiconductors satisfying these demands, fundamental insights on the relationship of optical properties are provided depending on molecular packing arrangement and the resultant electronic coupling thereof. Based on recent advancements in the theoretical understanding of intermolecular interactions between slip-stacked dyes, distinguishing classical J-aggregates with predominant long-range Coulomb coupling from charge transfer (CT)-mediated or -coupled J-aggregates, whose red-shifts are primarily governed by short-range orbital interactions, is suggested. Within this framework, the relationship between aggregate structure and functional properties of representative classes of dye aggregates is analyzed for the most advanced OSCs and wavelength-selective OPDs, providing important insights into the rational design of thin-film optoelectronic materials.}, language = {en} }