@article{HocheSchulzDietrichetal.2019, author = {Hoche, Joscha and Schulz, Alexander and Dietrich, Lysanne Monika and Humeniuk, Alexander and Stolte, Matthias and Schmidt, David and Brixner, Tobias and W{\"u}rthner, Frank and Mitric, Roland}, title = {The origin of the solvent dependence of fluorescence quantum yields in dipolar merocyanine dyes}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198707}, pages = {11013}, year = {2019}, abstract = {Fluorophores with high quantum yields are desired for a variety of applications. Optimization of promising chromophores requires an understanding of the non-radiative decay channels that compete with the emission of photons. We synthesized a new derivative of the famous laser dye 4-dicyanomethylen-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM),i.e., merocyanine 4-(dicyanomethylene)-2-tert-butyl-6-[3-(3-butyl-benzothiazol-2-ylidene)1-propenyl]-4H-pyran (DCBT). We measured fluorescence lifetimes and quantum yields in a variety of solvents and found a trend opposite to the energy gap law.This motivated a theoretical investigation into the possible non-radiative decay channels. We propose that a barrier to a conical intersection exists that is very sensitive to the solvent polarity. The conical intersection is characterized by a twisted geometry which allows a subsequent photoisomerization. Transient absorption measurements confirmed the formation of a photoisomer in unpolar solvents, while the measurements of fluorescence quantum yields at low temperature demonstrated the existence of an activation energy barrier.}, language = {en} } @unpublished{StennettBissingerGriesbecketal.2019, author = {Stennett, Tom E. and Bissinger, Philipp and Griesbeck, Stefanie and Ullrich, Stefan and Krummenacher, Ivo and Auth, Michael and Sperlich, Andreas and Stolte, Matthias and Radacki, Krzysztof and Yao, Chang-Jiang and W{\"u}rthner, Frank and Steffen, Andreas and Marder, Todd B. and Braunschweig, Holger}, title = {Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201900889}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180391}, year = {2019}, abstract = {In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts.}, language = {en} } @article{SchmidtStolteSuessetal.2019, author = {Schmidt, David and Stolte, Matthias and S{\"u}ß, Jasmin and Liess, Dr. Andreas and Stepanenko, Vladimir and W{\"u}rthner, Frank}, title = {Protein-like enwrapped perylene bisimide chromophore as bright microcrystalline emitter material}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {38}, doi = {10.1002/ange.201907618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204809}, pages = {13385-13389}, year = {2019}, abstract = {Strongly emissive solid-state materials are mandatory components for many emerging optoelectronic technologies, but fluorescence is often quenched in the solid state owing to strong intermolecular interactions. The design of new organic pigments, which retain their optical properties despite their high tendency to crystallize, could overcome such limitations. Herein, we show a new material with monomer-like absorption and emission profiles as well as fluorescence quantum yields over 90 \% in its crystalline solid state. The material was synthesized by attaching two bulky tris(4-tert-butylphenyl)phenoxy substituents at the perylene bisimide bay positions. These substituents direct a packing arrangement with full enwrapping of the chromophore and unidirectional chromophore alignment within the crystal lattice to afford optical properties that resemble those of their natural pigment counterparts, in which chromophores are rigidly embedded in protein environments.}, language = {en} }