@article{WalterReilichThieleetal.2013, author = {Walter, Maggie C. and Reilich, Peter and Thiele, Simone and Schessl, Joachim and Schreiber, Herbert and Reiners, Karlheinz and Kress, Wolfram and M{\"u}ller-Reible, Clemens and Vorgerd, Matthias and Urban, Peter and Schrank, Bertold and Deschauer, Marcus and Schlotter-Weigel, Beate and Kohnen, Ralf and Lochm{\"u}ller, Hans}, title = {Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial}, series = {Orphanet Journal of Rare Diseases}, volume = {8}, journal = {Orphanet Journal of Rare Diseases}, number = {26}, issn = {1750-1172}, doi = {10.1186/1750-1172-8-26}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125663}, year = {2013}, abstract = {Background: Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B). Methods: We assessed the one-year-natural course of dysferlinopathy, and the safety and efficacy of deflazacort treatment in a double-blind, placebo-controlled cross-over trial. After one year of natural course without intervention, 25 patients with genetically defined dysferlinopathy were randomized to receive deflazacort and placebo for six months each (1 mg/kg/day in month one, 1 mg/kg every 2nd day during months two to six) in one of two treatment sequences. Results: During one year of natural course, muscle strength declined about 2\% as measured by CIDD (Clinical Investigation of Duchenne Dystrophy) score, and 76 Newton as measured by hand-held dynamometry. Deflazacort did not improve muscle strength. In contrast, there is a trend of worsening muscle strength under deflazacort treatment, which recovers after discontinuation of the study drug. During deflazacort treatment, patients showed a broad spectrum of steroid side effects. Conclusion: Deflazacort is not an effective therapy for dysferlinopathies, and off-label use is not warranted. This is an important finding, since steroid treatment should not be administered in patients with dysferlinopathy, who may be often misdiagnosed as polymyositis.}, language = {en} } @article{SemmlerSacconiBachetal.2014, author = {Semmler, Anna-Lena and Sacconi, Sabrina and Bach, J. Elisa and Liebe, Claus and B{\"u}rmann, Jan and Kley, Rudolf A. and Ferbert, Andreas and Anderheiden, Roland and Van den Bergh, Peter and Martin, Jean-Jacques and De Jonghe, Peter and Neuen-Jacob, Eva and M{\"u}ller, Oliver and Deschauer, Marcus and Bergmann, Markus and Schr{\"o}der, J. Michael and Vorgerd, Matthias and Schulz, J{\"o}rg B. and Weis, Joachim and Kress, Wolfram and Claeys, Kristl G.}, title = {Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies}, series = {Orphanet Journal of Rare Diseases}, volume = {9}, journal = {Orphanet Journal of Rare Diseases}, number = {121}, issn = {1750-1172}, doi = {10.1186/s13023-014-0121-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115623}, year = {2014}, abstract = {Background: Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. Methods: We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. Results: We identified 14 heterozygous mutations (diagnostic yield of 37\%), among them the novel p. Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p. Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28\% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13\%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29\%). Conclusions: We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim.}, language = {en} } @article{PlutaHoffjanZimmeretal.2022, author = {Pluta, Natalie and Hoffjan, Sabine and Zimmer, Frederic and K{\"o}hler, Cornelia and L{\"u}cke, Thomas and Mohr, Jennifer and Vorgerd, Matthias and Nguyen, Hoa Huu Phuc and Atlan, David and Wolf, Beat and Zaum, Ann-Kathrin and Rost, Simone}, title = {Homozygous inversion on chromosome 13 involving SGCG detected by short read whole genome sequencing in a patient suffering from limb-girdle muscular dystrophy}, series = {Genes}, volume = {13}, journal = {Genes}, number = {10}, issn = {2073-4425}, doi = {10.3390/genes13101752}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288122}, year = {2022}, abstract = {New techniques in molecular genetic diagnostics now allow for accurate diagnosis in a large proportion of patients with muscular diseases. Nevertheless, many patients remain unsolved, although the clinical history and/or the muscle biopsy give a clear indication of the involved genes. In many cases, there is a strong suspicion that the cause must lie in unexplored gene areas, such as deep-intronic or other non-coding regions. In order to find these changes, next-generation sequencing (NGS) methods are constantly evolving, making it possible to sequence entire genomes to reveal these previously uninvestigated regions. Here, we present a young woman who was strongly suspected of having a so far genetically unsolved sarcoglycanopathy based on her clinical history and muscle biopsy. Using short read whole genome sequencing (WGS), a homozygous inversion on chromosome 13 involving SGCG and LINC00621 was detected. The breakpoint in intron 2 of SGCG led to the absence of γ-sarcoglycan, resulting in the manifestation of autosomal recessive limb-girdle muscular dystrophy 5 (LGMDR5) in the young woman.}, language = {en} }