@unpublished{WohlgemuthMitric2020, author = {Wohlgemuth, Matthias and Mitric, Roland}, title = {Excitation energy transport in DNA modelled by multi-chromophoric field-induced surface hopping}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, edition = {submitted version}, doi = {10.1039/D0CP02255A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209467}, year = {2020}, abstract = {Absorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level. The surface-hopping approach in the frame of the extended Frenkel exciton model combined with QM/MM techniques allowed us to simulate the photodynamics of the alternating (dAdT)10 : (dAdT)10 double-stranded DNA. In accordance with recent experiments, we find that the excited state decay is multiexponential, involving a long and a short component which are due to two distinct mechanisms: formation of long-lived delocalized excitonic and charge transfer states vs. ultrafast decaying localized states resembling those of the bare nucleobases. Our simulations explain all stages of the ultrafast photodynamics including initial photoexcitation, dynamical evolution out of the Franck-Condon region, excimer formation and nonradiative relaxation to the ground state.}, language = {en} } @article{WohlgemuthMitric2016, author = {Wohlgemuth, Matthias and Mitric, Roland}, title = {Photochemical Chiral Symmetry Breaking in Alanine}, series = {Journal of Physical Chemistry A}, volume = {45}, journal = {Journal of Physical Chemistry A}, number = {120}, doi = {10.1021/acs.jpca.6b07611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158557}, pages = {8976-8982}, year = {2016}, abstract = {We introduce a general theoretical approach for the simulation of photochemical dynamics under the influence of circularly polarized light to explore the possibility of generating enantiomeric enrichment through polarized-light-selective photochemistry. The method is applied to the simulation of the photolysis of alanine, a prototype chiral amino acid. We show that a systematic enantiomeric enrichment can be obtained depending on the helicity of the circularly polarized light that induces the excited-state photochemistry of alanine. By analyzing the patterns of the photoinduced fragmentation of alanine we find an inducible enantiomeric enrichment up to 1.7\%, which is also in good correspondence to the experimental findings. Our method is generally applicable to complex systems and might serve to systematically explore the photochemical origin of homochirality.}, language = {en} }