@article{BousquetFarrellCrooksetal.2016, author = {Bousquet, J. and Farrell, J. and Crooks, G. and Hellings, P. and Bel, E. H. and Bewick, M. and Chavannes, N. H. and Correia de Sousa, J. and Cruz, A. A. and Haahtela, T. and Joos, G. and Khaltaev, N. and Malva, J. and Muraro, A. and Nogues, M. and Palkonen, S. and Pedersen, S. and Robalo-Cordeiro, C. and Samolinski, B. and Strandberg, T. and Valiulis, A. and Yorgancioglu, A. and Zuberbier, T. and Bedbrook, A. and Aberer, W. and Adachi, M. and Agusti, A. and Akdis, C. A. and Akdis, M. and Ankri, J. and Alonso, A. and Annesi-Maesano, I. and Ansotegui, I. J. and Anto, J. M. and Arnavielhe, S. and Arshad, H. and Bai, C. and Baiardini, I. and Bachert, C. and Baigenzhin, A. K. and Barbara, C. and Bateman, E. D. and Begh{\´e}, B. and Ben Kheder, A. and Bennoor, K. S. and Benson, M. and Bergmann, K. C. and Bieber, T. and Bindslev-Jensen, C. and Bjermer, L. and Blain, H. and Blasi, F. and Boner, A. L. and Bonini, M. and Bonini, S. and Bosnic-Anticevitch, S. and Boulet, L. P. and Bourret, R. and Bousquet, P. J. and Braido, F. and Briggs, A. H. and Brightling, C. E. and Brozek, J. and Buhl, R. and Burney, P. G. and Bush, A. and Caballero-Fonseca, F. and Caimmi, D. and Calderon, M. A. and Calverley, P. M. and Camargos, P. A. M. and Canonica, G. W. and Camuzat, T. and Carlsen, K. H. and Carr, W. and Carriazo, A. and Casale, T. and Cepeda Sarabia, A. M. and Chatzi, L. and Chen, Y. Z. and Chiron, R. and Chkhartishvili, E. and Chuchalin, A. G. and Chung, K. F. and Ciprandi, G. and Cirule, I. and Cox, L. and Costa, D. J. and Custovic, A. and Dahl, R. and Dahlen, S. E. and Darsow, U. and De Carlo, G. and De Blay, F. and Dedeu, T. and Deleanu, D. and De Manuel Keenoy, E. and Demoly, P. and Denburg, J. A. and Devillier, P. and Didier, A. and Dinh-Xuan, A. T. and Djukanovic, R. and Dokic, D. and Douagui, H. and Dray, G. and Dubakiene, R. and Durham, S. R. and Dykewicz, M. S. and El-Gamal, Y. and Emuzyte, R. and Fabbri, L. M. and Fletcher, M. and Fiocchi, A. and Fink Wagner, A. and Fonseca, J. and Fokkens, W. J. and Forastiere, F. and Frith, P. and Gaga, M. and Gamkrelidze, A. and Garces, J. and Garcia-Aymerich, J. and Gemicioğlu, B. and Gereda, J. E. and Gonz{\´a}lez Diaz, S. and Gotua, M. and Grisle, I. and Grouse, L. and Gutter, Z. and Guzm{\´a}n, M. A. and Heaney, L. G. and Hellquist-Dahl, B. and Henderson, D. and Hendry, A. and Heinrich, J. and Heve, D. and Horak, F. and Hourihane, J. O'. B. and Howarth, P. and Humbert, M. and Hyland, M. E. and Illario, M. and Ivancevich, J. C. and Jardim, J. R. and Jares, E. J. and Jeandel, C. and Jenkins, C. and Johnston, S. L. and Jonquet, O. and Julge, K. and Jung, K. S. and Just, J. and Kaidashev, I. and Kaitov, M. R. and Kalayci, O. and Kalyoncu, A. F. and Keil, T. and Keith, P. K. and Klimek, L. and Koffi N'Goran, B. and Kolek, V. and Koppelman, G. H. and Kowalski, M. L. and Kull, I. and Kuna, P. and Kvedariene, V. and Lambrecht, B. and Lau, S. and Larenas‑Linnemann, D. and Laune, D. and Le, L. T. T. and Lieberman, P. and Lipworth, B. and Li, J. and Lodrup Carlsen, K. and Louis, R. and MacNee, W. and Magard, Y. and Magnan, A. and Mahboub, B. and Mair, A. and Majer, I. and Makela, M. J. and Manning, P. and Mara, S. and Marshall, G. D. and Masjedi, M. R. and Matignon, P. and Maurer, M. and Mavale‑Manuel, S. and Mel{\´e}n, E. and Melo‑Gomes, E. and Meltzer, E. O. and Menzies‑Gow, A. and Merk, H. and Michel, J. P. and Miculinic, N. and Mihaltan, F. and Milenkovic, B. and Mohammad, G. M. Y. and Molimard, M. and Momas, I. and Montilla‑Santana, A. and Morais‑Almeida, M. and Morgan, M. and M{\"o}sges, R. and Mullol, J. and Nafti, S. and Namazova‑Baranova, L. and Naclerio, R. and Neou, A. and Neffen, H. and Nekam, K. and Niggemann, B. and Ninot, G. and Nyembue, T. D. and O'Hehir, R. E. and Ohta, K. and Okamoto, Y. and Okubo, K. and Ouedraogo, S. and Paggiaro, P. and Pali‑Sch{\"o}ll, I. and Panzner, P. and Papadopoulos, N. and Papi, A. and Park, H. S. and Passalacqua, G. and Pavord, I. and Pawankar, R. and Pengelly, R. and Pfaar, O. and Picard, R. and Pigearias, B. and Pin, I. and Plavec, D. and Poethig, D. and Pohl, W. and Popov, T. A. and Portejoie, F. and Potter, P. and Postma, D. and Price, D. and Rabe, K. F. and Raciborski, F. and Radier Pontal, F. and Repka‑Ramirez, S. and Reitamo, S. and Rennard, S. and Rodenas, F. and Roberts, J. and Roca, J. and Rodriguez Ma{\~n}as, L. and et al,}, title = {Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)}, series = {Clinical and Translational Allergy}, volume = {6}, journal = {Clinical and Translational Allergy}, number = {29}, doi = {10.1186/s13601-016-0116-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166874}, year = {2016}, abstract = {Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) focuses on the integrated care of chronic diseases. Area 5 (Care Pathways) was initiated using chronic respiratory diseases as a model. The chronic respiratory disease action plan includes (1) AIRWAYS integrated care pathways (ICPs), (2) the joint initiative between the Reference site MACVIA-LR (Contre les MAladies Chroniques pour un VIeillissement Actif) and ARIA (Allergic Rhinitis and its Impact on Asthma), (3) Commitments for Action to the European Innovation Partnership on Active and Healthy Ageing and the AIRWAYS ICPs network. It is deployed in collaboration with the World Health Organization Global Alliance against Chronic Respiratory Diseases (GARD). The European Innovation Partnership on Active and Healthy Ageing has proposed a 5-step framework for developing an individual scaling up strategy: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualised and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing.}, language = {en} } @article{FerreiraGamazonAlEjehetal.2019, author = {Ferreira, Manuel A. and Gamazon, Eric R. and Al-Ejeh, Fares and Aittom{\"a}ki, Kristiina and Andrulis, Irene L. and Anton-Culver, Hoda and Arason, Adalgeir and Arndt, Volker and Aronson, Kristan J. and Arun, Banu K. and Asseryanis, Ella and Azzollini, Jacopo and Balma{\~n}a, Judith and Barnes, Daniel R. and Barrowdale, Daniel and Beckmann, Matthias W. and Behrens, Sabine and Benitez, Javier and Bermisheva, Marina and Bialkowska, Katarzyna and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Bolla, Manjeet K. and Borg, Ake and Brauch, Hiltrud and Brenner, Hermann and Broeks, Annegien and Burwinkel, Barbara and Cald{\´e}s, Trinidad and Caligo, Maria A. and Campa, Daniele and Campbell, Ian and Canzian, Federico and Carter, Jonathan and Carter, Brian D. and Castelao, Jose E. and Chang-Claude, Jenny and Chanock, Stephen J. and Christiansen, Hans and Chung, Wendy K. and Claes, Kathleen B. M. and Clarke, Christine L. and Couch, Fergus J. and Cox, Angela and Cross, Simon S. and Czene, Kamila and Daly, Mary B. and de la Hoya, Miguel and Dennis, Joe and Devilee, Peter and Diez, Orland and D{\"o}rk, Thilo and Dunning, Alison M. and Dwek, Miriam and Eccles, Diana M. and Ejlertsen, Bent and Ellberg, Carolina and Engel, Christoph and Eriksson, Mikael and Fasching, Peter A. and Fletcher, Olivia and Flyger, Henrik and Friedman, Eitan and Frost, Debra and Gabrielson, Marike and Gago-Dominguez, Manuela and Ganz, Patricia A. and Gapstur, Susan M. and Garber, Judy and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Glendon, Gord and Godwin, Andrew K. and Goldberg, Mark S. and Goldgar, David E. and Gonz{\´a}lez-Neira, Anna and Greene, Mark H. and Gronwald, Jacek and Guen{\´e}l, Pascal and Haimann, Christopher A. and Hall, Per and Hamann, Ute and He, Wei and Heyworth, Jane and Hogervorst, Frans B. L. and Hollestelle, Antoinette and Hoover, Robert N. and Hopper, John L. and Hulick, Peter J. and Humphreys, Keith and Imyanitov, Evgeny N. and Isaacs, Claudine and Jakimovska, Milena and Jakubowska, Anna and James, Paul A. and Janavicius, Ramunas and Jankowitz, Rachel C. and John, Esther M. and Johnson, Nichola and Joseph, Vijai and Karlan, Beth Y. and Khusnutdinova, Elza and Kiiski, Johanna I. and Ko, Yon-Dschun and Jones, Michael E. and Konstantopoulou, Irene and Kristensen, Vessela N. and Laitman, Yael and Lambrechts, Diether and Lazaro, Conxi and Leslie, Goska and Lester, Jenny and Lesueur, Fabienne and Lindstr{\"o}m, Sara and Long, Jirong and Loud, Jennifer T. and Lubiński, Jan and Makalic, Enes and Mannermaa, Arto and Manoochehri, Mehdi and Margolin, Sara and Maurer, Tabea and Mavroudis, Dimitrios and McGuffog, Lesley and Meindl, Alfons and Menon, Usha and Michailidou, Kyriaki and Miller, Austin and Montagna, Marco and Moreno, Fernando and Moserle, Lidia and Mulligan, Anna Marie and Nathanson, Katherine L. and Neuhausen, Susan L. and Nevanlinna, Heli and Nevelsteen, Ines and Nielsen, Finn C. and Nikitina-Zake, Liene and Nussbaum, Robert L. and Offit, Kenneth and Olah, Edith and Olopade, Olufunmilayo I. and Olsson, H{\aa}kan and Osorio, Ana and Papp, Janos and Park-Simon, Tjoung-Won and Parsons, Michael T. and Pedersen, Inge Sokilde and Peixoto, Ana and Peterlongo, Paolo and Pharaoh, Paul D. P. and Plaseska-Karanfilska, Dijana and Poppe, Bruce and Presneau, Nadege and Radice, Paolo and Rantala, Johanna and Rennert, Gad and Risch, Harvey A. and Saloustros, Emmanouil and Sanden, Kristin and Sawyer, Elinor J. and Schmidt, Marjanka K. and Schmutzler, Rita K. and Sharma, Priyanka and Shu, Xiao-Ou and Simard, Jaques and Singer, Christian F. and Soucy, Penny and Southey, Melissa C. and Spinelli, John J. and Spurdle, Amanda B. and Stone, Jennifer and Swerdlow, Anthony J. and Tapper, William J. and Taylor, Jack A. and Teixeira, Manuel R. and Terry, Mary Beth and Teul{\´e}, Alex and Thomassen, Mads and Th{\"o}ne, Kathrin and Thull, Darcy L. and Tischkowitz, Marc and Toland, Amanda E. and Torres, Diana and Truong, Th{\´e}r{\`e}se and Tung, Nadine and Vachon, Celine M. and van Asperen, Christi J. and van den Ouweland, Ans M. W. and van Rensburg, Elizabeth J. and Vega, Ana and Viel, Alexandra and Wang, Qin and Wappenschmidt, Barbara and Weitzel, Jeffrey N. and Wendt, Camilla and Winqvist, Robert and Yang, Xiaohong R. and Yannoukakos, Drakoulis and Ziogas, Argyrios and Kraft, Peter and Antoniou, Antonis C. and Zheng, Wei and Easton, Douglas F. and Milne, Roger L. and Beesley, Jonathan and Chenevix-Trench, Georgia}, title = {Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, organization = {EMBRACE Collaborators, GC-HBOC Study Collaborators, GEMO Study Collaborators, ABCTB Investigators, HEBON Investigators, BCFR Investigators}, doi = {10.1038/s41467-018-08053-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228024}, year = {2019}, abstract = {Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.}, language = {en} } @article{BousquetAntoBachertetal.2021, author = {Bousquet, Jean and Anto, Josep M. and Bachert, Claus and Haahtela, Tari and Zuberbier, Torsten and Czarlewski, Wienczyslawa and Bedbrook, Anna and Bosnic-Anticevich, Sinthia and Walter Canonica, G. and Cardona, Victoria and Costa, Elisio and Cruz, Alvaro A. and Erhola, Marina and Fokkens, Wytske J. and Fonseca, Joao A. and Illario, Maddalena and Ivancevich, Juan-Carlos and Jutel, Marek and Klimek, Ludger and Kuna, Piotr and Kvedariene, Violeta and Le, LTT and Larenas-Linnemann, D{\´e}sir{\´e}e E. and Laune, Daniel and Louren{\c{c}}o, Olga M. and Mel{\´e}n, Erik and Mullol, Joaquim and Niedoszytko, Marek and Odemyr, Mika{\"e}la and Okamoto, Yoshitaka and Papadopoulos, Nikos G. and Patella, Vincenzo and Pfaar, Oliver and Pham-Thi, Nh{\^a}n and Rolland, Christine and Samolinski, Boleslaw and Sheikh, Aziz and Sofiev, Mikhail and Suppli Ulrik, Charlotte and Todo-Bom, Ana and Tomazic, Peter-Valentin and Toppila-Salmi, Sanna and Tsiligianni, Ioanna and Valiulis, Arunas and Valovirta, Erkka and Ventura, Maria-Teresa and Walker, Samantha and Williams, Sian and Yorgancioglu, Arzu and Agache, Ioana and Akdis, Cezmi A. and Almeida, Rute and Ansotegui, Ignacio J. and Annesi-Maesano, Isabella and Arnavielhe, Sylvie and Basaga{\~n}a, Xavier and D. Bateman, Eric and B{\´e}dard, Annabelle and Bedolla-Barajas, Martin and Becker, Sven and Bennoor, Kazi S. and Benveniste, Samuel and Bergmann, Karl C. and Bewick, Michael and Bialek, Slawomir and E. Billo, Nils and Bindslev-Jensen, Carsten and Bjermer, Leif and Blain, Hubert and Bonini, Matteo and Bonniaud, Philippe and Bosse, Isabelle and Bouchard, Jacques and Boulet, Louis-Philippe and Bourret, Rodolphe and Boussery, Koen and Braido, Fluvio and Briedis, Vitalis and Briggs, Andrew and Brightling, Christopher E. and Brozek, Jan and Brusselle, Guy and Brussino, Luisa and Buhl, Roland and Buonaiuto, Roland and Calderon, Moises A. and Camargos, Paulo and Camuzat, Thierry and Caraballo, Luis and Carriazo, Ana-Maria and Carr, Warner and Cartier, Christine and Casale, Thomas and Cecchi, Lorenzo and Cepeda Sarabia, Alfonso M. and H. Chavannes, Niels and Chkhartishvili, Ekaterine and Chu, Derek K. and Cingi, Cemal and Correia de Sousa, Jaime and Costa, David J. and Courbis, Anne-Lise and Custovic, Adnan and Cvetkosvki, Biljana and D'Amato, Gennaro and da Silva, Jane and Dantas, Carina and Dokic, Dejan and Dauvilliers, Yves and De Feo, Giulia and De Vries, Govert and Devillier, Philippe and Di Capua, Stefania and Dray, Gerard and Dubakiene, Ruta and Durham, Stephen R. and Dykewicz, Mark and Ebisawa, Motohiro and Gaga, Mina and El-Gamal, Yehia and Heffler, Enrico and Emuzyte, Regina and Farrell, John and Fauquert, Jean-Luc and Fiocchi, Alessandro and Fink-Wagner, Antje and Fontaine, Jean-Fran{\c{c}}ois and Fuentes Perez, Jos{\´e} M. and Gemicioğlu, Bilun and Gamkrelidze, Amiran and Garcia-Aymerich, Judith and Gevaert, Philippe and Gomez, Ren{\´e} Maximiliano and Gonz{\´a}lez Diaz, Sandra and Gotua, Maia and Guldemond, Nick A. and Guzm{\´a}n, Maria-Antonieta and Hajjam, Jawad and Huerta Villalobos, Yunuen R. and Humbert, Marc and Iaccarino, Guido and Ierodiakonou, Despo and Iinuma, Tomohisa and Jassem, Ewa and Joos, Guy and Jung, Ki-Suck and Kaidashev, Igor and Kalayci, Omer and Kardas, Przemyslaw and Keil, Thomas and Khaitov, Musa and Khaltaev, Nikolai and Kleine-Tebbe, Jorg and Kouznetsov, Rostislav and Kowalski, Marek L. and Kritikos, Vicky and Kull, Inger and La Grutta, Stefania and Leonardini, Lisa and Ljungberg, Henrik and Lieberman, Philip and Lipworth, Brian and Lodrup Carlsen, Karin C. and Lopes-Pereira, Catarina and Loureiro, Claudia C. and Louis, Renaud and Mair, Alpana and Mahboub, Bassam and Makris, Micha{\"e}l and Malva, Joao and Manning, Patrick and Marshall, Gailen D. and Masjedi, Mohamed R. and Maspero, Jorge F. and Carreiro-Martins, Pedro and Makela, Mika and Mathieu-Dupas, Eve and Maurer, Marcus and De Manuel Keenoy, Esteban and Melo-Gomes, Elisabete and Meltzer, Eli O. and Menditto, Enrica and Mercier, Jacques and Micheli, Yann and Miculinic, Neven and Mihaltan, Florin and Milenkovic, Branislava and Mitsias, Dimitirios I. and Moda, Giuliana and Mogica-Martinez, Maria-Dolores and Mohammad, Yousser and Montefort, Steve and Monti, Ricardo and Morais-Almeida, Mario and M{\"o}sges, Ralph and M{\"u}nter, Lars and Muraro, Antonella and Murray, Ruth and Naclerio, Robert and Napoli, Luigi and Namazova-Baranova, Leyla and Neffen, Hugo and Nekam, Kristoff and Neou, Angelo and Nordlund, Bj{\"o}rn and Novellino, Ettore and Nyembue, Dieudonn{\´e} and O'Hehir, Robyn and Ohta, Ken and Okubo, Kimi and Onorato, Gabrielle L. and Orlando, Valentina and Ouedraogo, Solange and Palamarchuk, Julia and Pali-Sch{\"o}ll, Isabella and Panzner, Peter and Park, Hae-Sim and Passalacqua, Gianni and P{\´e}pin, Jean-Louis and Paulino, Ema and Pawankar, Ruby and Phillips, Jim and Picard, Robert and Pinnock, Hilary and Plavec, Davor and Popov, Todor A. and Portejoie, Fabienne and Price, David and Prokopakis, Emmanuel P. and Psarros, Fotis and Pugin, Benoit and Puggioni, Francesca and Quinones-Delgado, Pablo and Raciborski, Filip and Rajabian-S{\"o}derlund, Rojin and Regateiro, Frederico S. and Reitsma, Sietze and Rivero-Yeverino, Daniela and Roberts, Graham and Roche, Nicolas and Rodriguez-Zagal, Erendira and Rolland, Christine and Roller-Wirnsberger, Regina E. and Rosario, Nelson and Romano, Antonino and Rottem, Menachem and Ryan, Dermot and Salim{\"a}ki, Johanna and Sanchez-Borges, Mario M. and Sastre, Joaquin and Scadding, Glenis K. and Scheire, Sophie and Schmid-Grendelmeier, Peter and Sch{\"u}nemann, Holger J. and Sarquis Serpa, Faradiba and Shamji, Mohamed and Sisul, Juan-Carlos and Sofiev, Mikhail and Sol{\´e}, Dirceu and Somekh, David and Sooronbaev, Talant and Sova, Milan and Spertini, Fran{\c{c}}ois and Spranger, Otto and Stellato, Cristiana and Stelmach, Rafael and Thibaudon, Michel and To, Teresa and Toumi, Mondher and Usmani, Omar and Valero, Antonio A. and Valenta, Rudolph and Valentin-Rostan, Marylin and Pereira, Marilyn Urrutia and van der Kleij, Rianne and Van Eerd, Michiel and Vandenplas, Olivier and Vasankari, Tuula and Vaz Carneiro, Antonio and Vezzani, Giorgio and Viart, Fr{\´e}d{\´e}ric and Viegi, Giovanni and Wallace, Dana and Wagenmann, Martin and Wang, De Yun and Waserman, Susan and Wickman, Magnus and Williams, Dennis M. and Wong, Gary and Wroczynski, Piotr and Yiallouros, Panayiotis K. and Yusuf, Osman M. and Zar, Heather J. and Zeng, St{\´e}phane and Zernotti, Mario E. and Zhang, Luo and Shan Zhong, Nan and Zidarn, Mihaela}, title = {ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice}, series = {Allergy}, volume = {76}, journal = {Allergy}, number = {1}, doi = {10.1111/all.14422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228339}, pages = {168 -- 190}, year = {2021}, abstract = {Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.}, language = {en} } @article{LohseMaurerKlotzetal.1989, author = {Lohse, M. J. and Maurer, K. and Klotz, Karl-Norbert and Schwabe, U.}, title = {Synergistic effects of calcium-mobilizing agents and adenosine on histamine release from rat peritoneal mast cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60346}, year = {1989}, abstract = {1 Adenosine and its metabolically stable analogue N.etbyl-carboxamidoadenosine (NECA) enhance histamine release from rat peritoneal mast cells when tbese are stimulated by calciummobilizing agents. NECA and adenosine shift the concentration-response curve of tbe calcium ionophore A23187 to lower concentrations. 2 The potencies of NECA or adenosinein enhancing A23187-induced histamine release are dependent on the Ievel of stimulated release in tbe absence of adenosine analogues. At high Ievels of release their potencies are up to 20 times higher than at low Ievels. Consequently, averaged concentration-response curves of adenosine and NECA for enhancing bistamine release are shallow. 3 The adenosine transport blocker S-(p-nitrobenzyl)-6-thioinosine (NBTI) has no effect by itself at low Ievels of stimulated histamine release, but abolishes the enhancing effect of adenosine. At high Ievels of release, however, NBTI alone enhances the release of histamine. 4 lt is concluded that adenosine and calcium reciprocally enhance the sensitivity of the secretory processes to the effects of the other agent. The Ievels of intracellular adenosine obtained by trapping adenosine inside stimulated mast cells are sufficient to enhance histamine release substantially, suggesting that this effect may play a physiological and pathophysiological role.}, subject = {Toxikologie}, language = {en} } @article{FluegelRethwilmMaureretal.1987, author = {Fl{\"u}gel, Rolf M. and Rethwilm, Axel and Maurer, Bernd and Darai, Gholamreza}, title = {Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61509}, year = {1987}, abstract = {Recombinant clonesthat represent the 3' part ofthe genome of the human spumaretrovirus (foamy virus) were established from viral DNA and from DNA complementary to viral RNA. The recombinant clones were characterized by blot hybridizations and nucleotide sequence analysis. The deduced protein sequence of the clones at their 5' ends was found to be homologous to the 3' domain of retroviral reverse transcriptases. Downstream of a small intergerne pol-env region a long open reading frame of 985 amino acid residues was identified that according to its genomic location, size, glycosylation signals, and hydrophobicity protile closely resembles the lentiviral env genes. The spumaretroviral env gene is followed by two open reading frames, termed bel-l and bel-2 which are located between env and the long terminal repeat region. The long terminal repeat of 1259 nucleotides is preceded by a polypurine tract and contains the canonical signal sequences characteristic for transcriptional regulation of retroviruses. The provisional classitication of the spumaretrovirus subfamily is discussed.}, subject = {Virologie}, language = {en} } @article{RethwilmDaraiRoesenetal.1987, author = {Rethwilm, Axel and Darai, G. and R{\"o}sen, A. and Maurer, Bernd and Fl{\"u}gel, Rolf M.}, title = {Molecular cloning of the genome of human spumaretrovirus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61518}, year = {1987}, abstract = {DNA ofhuman spumaretrovirus (HSRV) was cloned from both cDNA and from viral DNA into phage A and bacterial plasmid vectors. The recombinant plasm.ids harboring viral DNA were characterized by Southern blot hybridization and restriction mapping. Physical maps were constructed from cDNA and found to be colinear with the restriction maps obtained from viral DNA. The recombinant clones isolated contained viral DNA inserts which rangein size from 2.2 kb to 15.4 kb. The recombinant clones allowed to construct a physical map of the complete HSRV provirus of 12.2 kb.}, subject = {Virologie}, language = {en} } @article{FluegelMaurerBannertetal.1987, author = {Fl{\"u}gel, Rolf M. and Maurer, Bernd and Bannert, Helmut and Rethwilm, Axel and Schnitzler, Paul and Darai, Gholamreza}, title = {Nucleotide sequence analysis of a cloned DNA fragment from human cells reveals homology to retrotransposons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61525}, year = {1987}, abstract = {During molecular cloning of proviral DNA of human. spumaretroVirus, various recombinant clones were estabUshed and analyzed. Blot hybridization revealed that one of the recoinbinant plasmids bad the characteristic features of a member of the long interspersed repetitive sequences famlly. The DNA element was analyzed by restrictioil mapping and nuelootide sequencing. It showed a high degree of amino acid sequence homology of 54.3\% when conipared with the 5'-terminal part of the pol gelie product of the murine retrotransposon LIMd. The 3' region of the cloned DNA element encodes proteins witb an even higher degree of homology of 67.4\% in comparison to the corresponding parts of a member of the primate Kpnl sequence family.}, subject = {Virologie}, language = {en} } @inproceedings{MaurerBannertRethwilmetal.1988, author = {Maurer, B. and Bannert, H. and Rethwilm, Axel and Darai, B. and Fl{\"u}gel, R. M.}, title = {Characterization of the env gene and of two novel coding regions of the human spumaretrovirus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86334}, year = {1988}, abstract = {Recombinant clones harboring retroviral DNA were established. The nucleotide sequence of the central and 3' region of the genome of the human spumaretrovirus was determined. The 5' end of the deduced protein sequence was homologaus to the endonuclease domain of retroviral reverse transcriptases. A small intergenic region is followed by a lang open reading frame of 985 aminoacid residues that according to its genomic location and structural features is a typical retroviral env gene. Surprisingly, the postenv region contains two open reading frames that encodes two novel retroviral genes, termed bel-l and bel-2. The 3' LTR is 963 nucleotides lang and contains the signal sequences characteristic for transcriptional regulation of retrovirus genomes.}, subject = {Spumaviren}, language = {en} }