@article{BruecknerRitschelJimenez‐Hallaetal.2023, author = {Br{\"u}ckner, Tobias and Ritschel, Benedikt and Jim{\´e}nez-Halla, J. Oscar C. and Fantuzzi, Felipe and Duwe, Dario and Markl, Christian and Dewhurst, Rian D. and Dietz, Maximilian and Braunschweig, Holger}, title = {Metal-Free Intermolecular C-H Borylation of N-Heterocycles at B-B Multiple Bonds}, series = {Angewandte Chemie International Edition}, volume = {62}, journal = {Angewandte Chemie International Edition}, number = {5}, doi = {10.1002/anie.202213284}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312385}, year = {2023}, abstract = {Carbene-stabilized diborynes of the form LBBL (L=N-heterocyclic carbene (NHC) or cyclic alkyl(amino)carbene (CAAC)) induce rapid, high yielding, intermolecular ortho-C-H borylation at N-heterocycles at room temperature. A simple pyridyldiborene is formed when an NHC-stabilized diboryne is combined with pyridine, while a CAAC-stabilized diboryne leads to activation of two pyridine molecules to give a tricyclic alkylideneborane, which can be forced to undergo a further H-shift resulting in a zwitterionic, doubly benzo-fused 1,3,2,5-diazadiborinine by heating. Use of the extended N-heteroaromatic quinoline leads to a borylmethyleneborane under mild conditions via an unprecedented boron-carbon exchange process.}, language = {en} } @article{CuiDietzHaerterichetal.2021, author = {Cui, Jingjing and Dietz, Maximilian and H{\"a}rterich, Marcel and Fantuzzi, Felipe and Lu, Wei and Dewhurst, Rian D. and Braunschweig, Holger}, title = {Diphosphino-Functionalized 1,8-Naphthyridines: a Multifaceted Ligand Platform for Boranes and Diboranes}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {63}, doi = {10.1002/chem.202102721}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256994}, pages = {15751-15756}, year = {2021}, abstract = {A 1,8-naphthyridine diphosphine (NDP) reacts with boron-containing Lewis acids to generate complexes featuring a number of different naphthyridine bonding modes. When exposed to diborane B\(_{2}\)Br\(_{4}\), NDP underwent self-deprotonation to afford [NDP-B\(_{2}\)Br\(_{3}\)]Br, an unsymmetrical diborane comprised of four fused rings. The reaction of two equivalents of monoborane BBr\(_{3}\) and NDP in a non-polar solvent provided the simple phosphine-borane adduct [NDP(BBr\(_{3}\))\(_{2}\)], which then underwent intramolecular halide abstraction to furnish the salt [NDP-BBr\(_{2}\)][BBr\(_{4}\)], featuring a different coordination mode from that of [NDP-B\(_{2}\)Br\(_{3}\)]Br. Direct deprotonation of NDP by KHMDS or PhCH2K generates mono- and dipotassium reagents, respectively. The monopotassium reagent reacts with one or half an equivalent of B\(_{2}\)(NMe\(_{2}\))\(_{2}\)Cl\(_{2}\) to afford NDP-based diboranes with three or four amino substituents.}, language = {en} } @article{LuJayaramanFantuzzietal.2022, author = {Lu, Wei and Jayaraman, Arumugam and Fantuzzi, Felipe and Dewhurst, Rian D. and H{\"a}rterich, Marcel and Dietz, Maximilian and Hagspiel, Stephan and Krummenbacher, Ivo and Hammond, Kai and Cui, Jingjing and Braunschweig, Holger}, title = {An unsymmetrical, cyclic diborene based on a chelating CAAC ligand and its small-molecule activation and rearrangement chemistry}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {3}, doi = {10.1002/anie.202113947}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256576}, year = {2022}, abstract = {A one-pot synthesis of a CAAC-stabilized, unsymmetrical, cyclic diborene was achieved via consecutive two-electron reduction steps from an adduct of CAAC and B\(_2\)Br\(_4\)(SMe\(_2\))\(_2\). Theoretical studies revealed that this diborene has a considerably smaller HOMO-LUMO gap than those of reported NHC- and phosphine-supported diborenes. Complexation of the diborene with [AuCl(PCy\(_3\))] afforded two diborene-Au\(^I\) π complexes, while reaction with DurBH\(_2\), P\(_4\) and a terminal acetylene led to the cleavage of B-H, P-P, and C-C π bonds, respectively. Thermal rearrangement of the diborene gave an electron-rich cyclic alkylideneborane, which readily coordinated to Ag\(^I\) via its B=C double bond.}, language = {en} }