@unpublished{WernerAndreeJavadietal.2018, author = {Werner, Rudolf A. and Andree, Christian and Javadi, Mehrbod S. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P. and Pienta, Kenneth J.}, title = {A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging}, series = {Urology - The Gold Journal}, journal = {Urology - The Gold Journal}, issn = {0090-4295}, doi = {10.1016/j.urology.2018.03.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161103}, year = {2018}, abstract = {No abstract available.}, subject = {Virchow Node}, language = {en} } @article{WernerAndreeJavadietal.2018, author = {Werner, Rudolf A. and Andree, Christian and Javadi, Mehrbod S. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P. and Pienta, Kenneth J.}, title = {A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging}, series = {Urology - The Gold Journal}, volume = {117}, journal = {Urology - The Gold Journal}, issn = {0090-4295}, doi = {10.1016/j.urology.2018.03.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164632}, pages = {18-21}, year = {2018}, abstract = {No abstract available.}, language = {en} } @article{WernerChenRoweetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {Moving into the Next Era of PET Myocardial Perfusion Imaging - Introduction of Novel \(^{18}\)F-labeled Tracers}, series = {The International Journal of Cardiovascular Imaging}, journal = {The International Journal of Cardiovascular Imaging}, issn = {1569-5794}, doi = {10.1007/s10554-018-1469-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169134}, year = {2018}, abstract = {The heart failure (HF) epidemic continues to rise with coronary artery disease (CAD) as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 sec), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed.}, subject = {Positronenemissionstomografie}, language = {en} } @article{WernerIlhanLehneretal.2018, author = {Werner, Rudolf A. and Ilhan, Harun and Lehner, Sebastian and Papp, L{\´a}szl{\´o} and Zs{\´o}t{\´e}r, Norbert and Schatka, Imke and Muegge, Dirk O. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Bartenstein, Peter and Bengel, Frank and Essler, Markus and Lapa, Constantin and Bundschuh, Ralph A.}, title = {Pre-therapy Somatostatin-Receptor-Based Heterogeneity Predicts Overall Survival in Pancreatic Neuroendocrine Tumor Patients Undergoing Peptide Receptor Radionuclide Therapy}, series = {Molecular Imaging and Biology}, journal = {Molecular Imaging and Biology}, issn = {1536-1632}, doi = {10.1007/s11307-018-1252-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167168}, year = {2018}, abstract = {Purpose: Early identification of aggressive disease could improve decision-support in pancreatic neuroendocrine tumor (pNET) patients prior to peptide receptor radionuclide therapy (PRRT). The prognostic value of intratumoral textural features (TF) determined by baseline somatostatin receptor (SSTR)-PET before PRRT was analyzed. Procedures: 31 patients with G1/G2 pNET were enrolled (G2, n=23/31). Prior to PRRT with [\(^{177}\)Lu]DOTATATE (mean, 3.6 cycles), baseline SSTR-PET/CT was performed. By segmentation of 162 (median per patient, 5) metastases, intratumoral TF were computed. The impact of conventional PET parameters (SUV\(_{mean/max}\)), imaging-based TF as well as clinical parameters (Ki67, CgA) for prediction of both progression-free (PFS) and overall survival (OS) after PRRT was evaluated. Results: Within a median follow-up of 3.7y, tumor progression was detected in 21 patients (median, 1.5y) and 13/31 deceased (median, 1.9y). In ROC analysis, the TF Entropy, reflecting derangement on a voxel-by-voxel level, demonstrated predictive capability for OS (cutoff=6.7, AUC=0.71, p=0.02). Of note, increasing Entropy could predict a longer survival (>6.7, OS=2.5y, 17/31), whereas less voxel-based derangement portended inferior outcome (<6.7, OS=1.9y, 14/31). These findings were supported in a G2 subanalysis (>6.9, OS=2.8y, 9/23 vs. <6.9, OS=1.9y, 14/23). Kaplan-Meier analysis revealed a significant distinction between high- and low-risk groups using Entropy (n=31, p<0.05). For those patients below the ROC-derived threshold, the relative risk of death after PRRT was 2.73 (n=31, p=0.04). Ki67 was negatively associated with PFS (p=0.002); however, SUVmean/max failed in prognostication (n.s.). Conclusions: In contrast to conventional PET parameters, assessment of intratumoral heterogeneity demonstrated superior prognostic performance in pNET patients undergoing PRRT. This novel PET-based strategy of outcome prediction prior to PRRT might be useful for patient risk stratification.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerBundschuhBundschuhetal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Bundschuh, Lena and Javadi, Mehrbod S. and Higuchi, Takahiro and Weich, Alexander and Sheikhbahaei, Sara and Pienta, Kenneth J. and Buck, Andreas K. and Pomper, Martin G. and Gorin, Michael A. and Lapa, Constantin and Rowe, Steven P.}, title = {MI-RADS: Molecular Imaging Reporting and Data Systems - A Generalizable Framework for Targeted Radiotracers with Theranostic Implications}, series = {Annals of Nuclear Medicine}, journal = {Annals of Nuclear Medicine}, issn = {0914-7187}, doi = {10.1007/s12149-018-1291-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166995}, year = {2018}, abstract = {Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader's confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerBundschuhHiguchietal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Higuchi, Takahiro and Javadi, Mehrbod S. and Rowe, Steven P. and Zs{\´o}t{\´e}r, Norbert and Kroiss, Matthias and Fassnacht, Martin and Buck, Andreas K. and Kreissl, Michael C. and Lapa, Constantin}, title = {Volumetric and Texture Analysis of Pretherapeutic \(^{18}\)F-FDG PET can Predict Overall Survival in Medullary Thyroid Cancer Patients Treated with Vandetanib}, series = {Endocrine}, journal = {Endocrine}, issn = {1355-008X}, doi = {10.1007/s12020-018-1749-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167910}, year = {2018}, abstract = {Purpose: The metabolically most active lesion in 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) PET/CT can predict progression-free survival (PFS) in patients with medullary thyroid carcinoma (MTC) starting treatment with the tyrosine kinase inhibitor (TKI) vandetanib. However, this metric failed in overall survival (OS) prediction. In the present proof of concept study, we aimed to explore the prognostic value of intratumoral textural features (TF) as well as volumetric parameters (total lesion glycolysis, TLG) derived by pre-therapeutic \(^{18}\)F-FDG PET. Methods: Eighteen patients with progressive MTC underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after vandetanib initiation. By manual segmentation of the tumor burden at baseline and follow-up PET, intratumoral TF and TLG were computed. The ability of TLG, imaging-based TF, and clinical parameters (including age, tumor marker doubling times, prior therapies and RET (rearranged during transfection) mutational status) for prediction of both PFS and OS were evaluated. Results: The TF Complexity and the volumetric parameter TLG obtained at baseline prior to TKI initiation successfully differentiated between low- and high-risk patients. Complexity allocated 10/18 patients to the high-risk group with an OS of 3.3y (vs. low-risk group, OS=5.3y, 8/18, AUC=0.78, P=0.03). Baseline TLG designated 11/18 patients to the high-risk group (OS=3.5y vs. low-risk group, OS=5y, 7/18, AUC=0.83, P=0.005). The Hazard Ratio for cancer-related death was 6.1 for Complexity (TLG, 9.5). Among investigated clinical parameters, the age at initiation of TKI treatment reached significance for PFS prediction (P=0.02, OS, n.s.). Conclusions: The TF Complexity and the volumetric parameter TLG are both independent parameters for OS prediction.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerEisslerHayakawaetal.2018, author = {Werner, Rudolf A. and Eissler, Christoph and Hayakawa, Nobuyuki and Arias-Loza, Paula and Wakabayashi, Hiroshi and Javadi, Mehrbod S. and Chen, Xinyu and Shinaji, Tetsuya and Lapa, Constantin and Pelzer, Theo and Higuchi, Takahiro}, title = {Left Ventricular Diastolic Dysfunction in a Rat Model of Diabetic Cardiomyopathy using ECG-gated \(^{18}\)F-FDG PET}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {17631}, doi = {10.1038/s41598-018-35986-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171765}, year = {2018}, abstract = {In diabetic cardiomyopathy, left ventricular (LV) diastolic dysfunction is one of the earliest signs of cardiac involvement prior to the definitive development of heart failure (HF). We aimed to explore the LV diastolic function using electrocardiography (ECG)-gated \(^{18}\)F-fluorodeoxyglucose positron emission tomography (\(^{18}\)F-FDG PET) imaging beyond the assessment of cardiac glucose utilization in a diabetic rat model. ECG-gated \(^{18}\)F-FDG PET imaging was performed in a rat model of type 2 diabetes (ZDF fa/fa) and ZL control rats at age of 13 weeks (n=6, respectively). Under hyperinsulinemic-euglycemic clamp to enhance cardiac activity, \(^{18}\)F-FDG was administered and subsequently, list-mode imaging using a dedicated small animal PET system with ECG signal recording was performed. List-mode data were sorted and reconstructed into tomographic images of 16 frames per cardiac cycle. Left ventricular functional parameters (systolic: LV ejection fraction (EF), heart rate (HR) vs. diastolic: peak filling rate (PFR)) were obtained using an automatic ventricular edge detection software. No significant difference in systolic function could be obtained (ZL controls vs. ZDF rats: LVEF, 62.5±4.2 vs. 59.4±4.5\%; HR: 331±35 vs. 309±24 bpm; n.s., respectively). On the contrary, ECG-gated PET imaging showed a mild but significant decrease of PFR in the diabetic rats (ZL controls vs. ZDF rats: 12.1±0.8 vs. 10.2±1 Enddiastolic Volume/sec, P<0.01). Investigating a diabetic rat model, ECG-gated \(^{18}\)F-FDG PET imaging detected LV diastolic dysfunction while systolic function was still preserved. This might open avenues for an early detection of HF onset in high-risk type 2 diabetes before cardiac symptoms become apparent.}, language = {en} } @article{WernerWeichKircheretal.2018, author = {Werner, Rudolf A. and Weich, Alexander and Kircher, Malte and Solnes, Lilja B. and Javadi, Mehrbod S. and Higuchi, Takahiro and Buck, Andreas K. and Pomper, Martin G. and Rowe, Steven and Lapa, Constantin}, title = {The theranostic promise for neuroendocrine tumors in the late 2010s - Where do we stand, where do we go?}, series = {Theranostics}, volume = {8}, journal = {Theranostics}, number = {22}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170264}, pages = {6088-6100}, year = {2018}, abstract = {More than 25 years after the first peptide receptor radionuclide therapy (PRRT), the concept of somatostatin receptor (SSTR)-directed imaging and therapy for neuroendocrine tumors (NET) is seeing rapidly increasing use. To maximize the full potential of its theranostic promise, efforts in recent years have expanded recommendations in current guidelines and included the evaluation of novel theranostic radiotracers for imaging and treatment of NET. Moreover, the introduction of standardized reporting framework systems may harmonize PET reading, address pitfalls in interpreting SSTR-PET/CT scans and guide the treating physician in selecting PRRT candidates. Notably, the concept of PRRT has also been applied beyond oncology, e.g. for treatment of inflammatory conditions like sarcoidosis. Future perspectives may include the efficacy evaluation of PRRT compared to other common treatment options for NET, novel strategies for closer monitoring of potential side effects, the introduction of novel radiotracers with beneficial pharmacodynamic and kinetic properties or the use of supervised machine learning approaches for outcome prediction. This article reviews how the SSTR-directed theranostic concept is currently applied and also reflects on recent developments that hold promise for the future of theranostics in this context.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{ChenWernerLapaetal.2018, author = {Chen, Xinyu and Werner, Rudolf A. and Lapa, Constantin and Nose, Naoko and Hirano, Mitsuru and Javadi, Mehrbod S. and Robinson, Simon and Higuchi, Takahiro}, title = {Subcellular storage and release mode of the novel \(^{18}\)F-labeled sympathetic nerve PET tracer LMI1195}, series = {EJNMMI Research}, volume = {8}, journal = {EJNMMI Research}, number = {12}, issn = {2191-219X}, doi = {10.1186/s13550-018-0365-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167081}, year = {2018}, abstract = {Background: \(^{18}\)F-N-[3-bromo-4-(3-fluoro-propoxy)-benzyl]-guanidine (\(^{18}\)F-LMI1195) is a new class of PET tracer designed for sympathetic nervous imaging of the heart. The favorable image quality with high and specific neural uptake has been previously demonstrated in animals and humans, but intracellular behavior is not yet fully understood. The aim of the present study is to verify whether it is taken up in storage vesicles and released in company with vesicle turnover. Results: Both vesicle-rich (PC12) and vesicle-poor (SK-N-SH) norepinephrine-expressing cell lines were used for in vitro tracer uptake studies. After 2 h of \(^{18}\)F-LMI1195 preloading into both cell lines, effects of stimulants for storage vesicle turnover (high concentration KCl (100 mM) or reserpine treatment) were measured at 10, 20, and 30 min. \(^{131}\)I-meta-iodobenzylguanidine (\(^{131}\)I-MIBG) served as a reference. Both high concentration KCl and reserpine enhanced \(^{18}\)F-LMI1195 washout from PC12 cells, while tracer retention remained stable in the SK-N-SH cells. After 30 min of treatment, 18F-LMI1195 releasing index (percentage of tracer released from cells) from vesicle-rich PC12 cells achieved significant differences compared to cells without treatment condition. In contrast, such effect could not be observed using vesicle-poor SK-N-SH cell lines. Similar tracer kinetics after KCl or reserpine treatment were also observed using 131I-MIBG. In case of KCl exposure, Ca\(^{2+}\)-free buffer with the calcium chelator, ethylenediaminetetracetic acid (EDTA), could suppress the tracer washout from PC12 cells. This finding is consistent with the tracer release being mediated by Ca\(^{2+}\) influx resulting from membrane depolarization. Conclusions: Analogous to \(^{131}\)I-MIBG, the current in vitro tracer uptake study confirmed that \(^{131}\)F-LMI1195 is also stored in vesicles in PC12 cells and released along with vesicle turnover. Understanding the basic kinetics of \(^{18}\)FLMI1195 at a subcellular level is important for the design of clinical imaging protocols and imaging interpretation.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{WernerMarcusSheikhbahaeietal.2018, author = {Werner, Rudolf A. and Marcus, Charles and Sheikhbahaei, Sara and Solnes, Lilja B. and Leal, Jeffrey P. and Du, Yong and Rowe, Steven P. and Higuchi, Takahiro and Buck, Andreas K. and Lapa, Constantin and Javadi, Mehrbod S.}, title = {Visual and Semiquantitative Accuracy in Clinical Baseline 123I-Ioflupane SPECT/CT Imaging}, series = {Clinical Nuclear Medicine}, volume = {44}, journal = {Clinical Nuclear Medicine}, number = {1}, issn = {1536-0229}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168181}, year = {2018}, abstract = {PURPOSE: We aimed to (a) elucidate the concordance of visual assessment of an initial I-ioflupane scan by a human interpreter with comparison to results using a fully automatic semiquantitative method and (b) to assess the accuracy compared to follow-up (f/u) diagnosis established by movement disorder specialists. METHODS: An initial I-ioflupane scan was performed in 382 patients with clinically uncertain Parkinsonian syndrome. An experienced reader performed a visual evaluation of all scans independently. The findings of the visual read were compared with semiquantitative evaluation. In addition, available f/u clinical diagnosis (serving as a reference standard) was compared with results of the human read and the software. RESULTS: When comparing the semiquantitative method with the visual assessment, discordance could be found in 25 (6.5\%) of 382 of the cases for the experienced reader (ĸ = 0.868). The human observer indicated region of interest misalignment as the main reason for discordance. With neurology f/u serving as reference, the results of the reader revealed a slightly higher accuracy rate (87.7\%, ĸ = 0.75) compared to semiquantification (86.2\%, ĸ = 0.719, P < 0.001, respectively). No significant difference in the diagnostic performance of the visual read versus software-based assessment was found. CONCLUSIONS: In comparison with a fully automatic semiquantitative method in I-ioflupane interpretation, human assessment obtained an almost perfect agreement rate. However, compared to clinical established diagnosis serving as a reference, visual read seemed to be slightly more accurate as a solely software-based quantitative assessment.}, subject = {SPECT}, language = {en} }