@article{WannerFeldtRasmussenJovanovicetal.2020, author = {Wanner, Christoph and Feldt-Rasmussen, Ulla and Jovanovic, Ana and Linhart, Aleš and Yang, Meng and Ponce, Elvira and Brand, Eva and Germain, Dominique P. and Hughes, Derralynn A. and Jefferies, John L. and Martins, Anna Maria and Nowak, Albina and Vujkovac, Bojan and Weidemann, Frank and West, Michael L. and Ortiz, Alberto}, title = {Cardiomyopathy and kidney function in agalsidase beta-treated female Fabry patients: a pre-treatment vs. post-treatment analysis}, series = {ESC Heart Failure}, volume = {7}, journal = {ESC Heart Failure}, number = {3}, doi = {10.1002/ehf2.12647}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235963}, pages = {825-834}, year = {2020}, abstract = {Long-term treatment effect studies in large female Fabry patient groups are challenging to design because of phenotype heterogeneity and lack of appropriate comparison groups, and have not been reported. We compared long-term cardiomyopathy and kidney function outcomes after agalsidase beta treatment with preceding treatment-naive outcomes. Methods and results Self-controlled pretreatment and post-treatment comparison (piecewise mixed linear modelling) included Fabry female patients ≥18 years at treatment initiation who received agalsidase beta (0.9-1.1 mg/kg every other week) for ≥2 years, with ≥2 pretreatment and ≥2 post-treatment outcome measurements during 10-year follow-up. Left ventricular posterior wall thickness (LVPWT)/interventricular septal thickness (IVST) and estimated glomerular filtration rate (eGFR, Chronic Kidney Disease Epidemiology Collaboration creatinine equation) analyses included 42 and 86 patients, respectively, aged 50.0 and 46.3 years at treatment initiation, respectively. LVPWT and IVST increased pretreatment (follow-up 3.5 years) but stabilized during 3.6 years of treatment (LVPWT: n = 38, slope difference [95\% confidence interval (CI)] = - 0.41 [ - 0.68, - 0.15] mm/year, P\(_{pre-post difference}\)<0.01; IVST: n = 38, slope difference =-0.32 [-0.67, 0.02] mm/year, P\(_{pre-post difference}\) = 0.07). These findings were not modified by renal involvement or antiproteinuric agent use. Compared with the treatment-naive period (follow-up 3.6 years), eGFR decline remained modest and stabilized within normal ranges during 4.1 years of treatment (slope difference, 95\% CI: -0.13 [-1.15, 0.89] mL/min/1.73m\(^2\)/year, P\(_{pre-post difference}\) = 0.80). Conclusions Cardiac hypertrophy, progressing during pretreatment follow-up, appeared to stabilize during sustained agalsidase beta treatment. eGFR decline remained within normal ranges. This suggests that treatment may prevent further Fabry-related progression of cardiomyopathy in female patients and maintain normal kidney function.}, language = {en} } @article{LiuChenGaoetal.2017, author = {Liu, Han and Chen, Chunhai and Gao, Zexia and Min, Jiumeng and Gu, Yongming and Jian, Jianbo and Jiang, Xiewu and Cai, Huimin and Ebersberger, Ingo and Xu, Meng and Zhang, Xinhui and Chen, Jianwei and Luo, Wei and Chen, Boxiang and Chen, Junhui and Liu, Hong and Li, Jiang and Lai, Ruifang and Bai, Mingzhou and Wei, Jin and Yi, Shaokui and Wang, Huanling and Cao, Xiaojuan and Zhou, Xiaoyun and Zhao, Yuhua and Wei, Kaijian and Yang, Ruibin and Liu, Bingnan and Zhao, Shancen and Fang, Xiaodong and Schartl, Manfred and Qian, Xueqiao and Wang, Weimin}, title = {The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet}, series = {GigaScience}, volume = {6}, journal = {GigaScience}, number = {7}, doi = {10.1093/gigascience/gix039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170844}, year = {2017}, abstract = {The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation.}, language = {en} }